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Abstract – Swirling groups of animals or bacteria are a common phenomenon in nature. It is
thought that this collective organization occurs in the vicinity of a continuous transition between
dynamic states to ensure robust group cohesion while allowing for high sensitivity to outside
stimuli like predators. Here, we present Brownian dynamics simulations of active particles with
social interactions which can form stable swirls. We observe a transition between swarming and
swirling states and analyze these using a sixth-order Landau-type model. Our results suggest that
the transition is weakly discontinuous. However, by lowering the rotational diffusion coefficient,
it becomes continuous.
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Introduction. – The collective behaviour of individual
entities capable of autonomous motion and their intrinsic
non-equilibrium nature is of much interest in soft-matter
physics [1–5]. Their study is largely motivated by liv-
ing organisms, which exhibit active motion at many dif-
ferent scales, from microscopic bacteria to macroscopic
mammals [6,7]. In general, the active individuals are
modelled as particles with constant speed, influenced by
diffusion and inter-particle interactions [8] through hy-
drodynamic [4], phoretic [9–13], electrostatic [14], mag-
netostatic [15–17], and other forces, which give rise to
numerous interesting dynamical patterns [3,4]. For ex-
ample, steric interactions can lead to alignment in elon-
gated active particles [18,19] or to motility-induced phase
separation when their shape is spherical [20–23]. Under
gravity they develop polar order and bottom-heavy active
particles even show inverted sedimentation profiles as well
as other dynamical states [24,25]. In recent years, non-
reciprocal interactions have also come into focus [26–30].
However, the wide prevalence of collective motion in bi-

ological systems and their large correlation lengths have
led to theories proposing these emerge from alignment
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based on simple interactions between neighbouring entities
within larger groups, named social interactions [31–36].
These interactions do not represent external forces, but
rather describe the way individuals react to their respec-
tive environment. Agent-based models with social interac-
tion rules have successfully been used to describe collective
decision making in animal groups, for example, in school-
ing fish [37–39], in human pedestrians [40], and in human
group coordination [41].

Swirling phenomena, in which individual entities create
collectively ordered rotational motion, are a special case
of this wider class of collective organization. They can be
found at different scales in nature, from the behaviour of
microscopic bacteria [42], up to ants [43], and larger an-
imals like schooling fish [44]. It has been proposed that
such systems exist in the vicinity of a critical point belong-
ing to a phase transition, to ensure robust group cohesion
while allowing for high sensitivity to outside stimuli like
predators [31,45].

Active particles (APs) are a versatile tool to model
and explore the collective dynamics of energy consuming,
self-propelled entities with tailored interactions, both in
experiment and theory [4]. In this letter we perform simu-
lations of APs with social interactions that show a transi-
tion between a swarming and an ordered swirling state.
We directly address the experimental work by Bäuerle
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et al. [46], in which a set of social interaction rules was
devised and applied to propelled silica particles, in or-
der to replicate the collective swirling dynamics found
in nature. The observed transition between the swarm-
ing and swirling states is a symmetry-breaking transition
described by an order parameter OR, where the sign of
OR corresponds to counter- or clockwise rotating states.
According to the experiments [46,47] the transition dis-
plays critical dynamics, which can be accessed through
a Landau-type description with an effective free energy
f = aO2

R + bO4
R.

Here, we perform simulations following ref. [46] and
reanalyze the probability distribution for the fluctuating
swirling order parameter

P (OR,Δ) =
1

Z
e−f(OR,Δ), (1)

which we write similar to a Boltzmann distribution and
where Δ is the swirling control parameter to be defined
below. Our analysis suggests that the effective free energy
appearing in P (OR,Δ) has to be described by a Landau-
type expansion up to sixth order in OR,

f(OR,Δ) = a O2
R + b O4

R + c O6
R. (2)

Note that odd terms in OR cannot appear since left- and
right-turning swirls are equally probable. The expansion
coefficients a, b, and c depend on Δ.

Now, the effective free energy of eq. (2) allows a richer
phenomenology of transitions between dynamic states
compared to the fourth-order model, where only a contin-
uous symmetry-breaking transition occurs at a = 0 from
the swarming (a > 0) to the swirling state (a < 0) with
b > 0. In contrast and as sketched in fig. 1, the follow-
ing scenario occurs for the sixth-order Landau-type model
with constant c > 0 [48]. For positive b one still observes
the continuous transition at a = 0 into the swirling state.
However, for a negative fourth-order coefficient b the line
at a = 0 goes over to a line of discontinuous or first-order
transitions that bends away from the negative b axis. Both
lines meet at the tricritical point (a = 0, b = 0).
In the following we show results from Brownian dynam-

ics simulations for the symmetry-breaking swirling tran-
sition. They seem to suggest that the experiments in
refs. [46,47] might display a weak discontinuous transi-
tion, which can be described by a Landau-type model of
sixth order. Furthermore, by lowering the rotational dif-
fusion coefficient of the active particles, the system moves
around the tricritical point in the upper half plane, when
varying Δ, so that the transition becomes continuous (see
fig. 1 for a schematic).

Methods. – Active particles (APs) are able to self-
propel and reorient themselves by absorbing energy from
their surroundings [4,49]. Their motion is influenced by a
combination of random fluctuations and active swimming
called active Brownian motion. They represent a minimal
model for active individuals and can thus, in combination

Fig. 1: Schematic dynamic state diagram of the sixth-order
Landau-type model of eq. (2). The dashed line of continuous
transitions (a = 0, b > 0) goes over into a solid line of discon-
tinuous transitions (ac = b2/4c); the red dot (a = 0, b = 0)
is a tricritical point. The dynamic states of the orange and
blue path show a discontinuous or continuous transition, re-
spectively.

with appropriate interaction rules, be used to investigate
the principles underlying the collective behaviour observed
in biological systems.
Zonal models with social interaction rules have repeat-

edly been used to describe the collective behaviour of
living organisms [32,33,37–39]. In our simulations, the
two-dimensional model applied in the experiments con-
ducted by Bäuerle et al. [46] is used. The rules defined
therein are based on the avoidance and alignment between
neighbouring entities. The motion of the APs is restricted
to a plane and depends on the presence of other particles
in circular concentric zones of different radii. The zones
are depicted in fig. 2(a) and will be referred to as the zone
of repulsion (ZOR) and the zones of detection of orien-
tations (ZOO) and positions (ZOP). Note that this zonal
model can be extended by introducing a field of vision for
all particles, as opposed to using their entire surroundings
as we do here [46].
The APs are characterized by their positions r = r r̂

relative to the mean position of all particles, where r is
the distance and r̂ the unit directional vector. Further-
more, they have propulsion velocities v = v û with speed
v and unit orientation vector û. Now, we describe the
social interaction rules that determine a target orienta-
tion towards which the APs reorient while experiencing
a torque. If there are no APs within the ZOR of an AP
i, its target orientation is determined by calculating the
average relative position Pi of all APs within the ZOP, as
well as the average orientation 〈û〉i of neighbouring APs
within the ZOO, according to

Pi =
1

nZOP

∑
j∈IZOP

(rj − ri), (3)

〈û〉i =
1

nZOO

∑
j∈IZOO

ûj . (4)
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Fig. 2: Zonal model with social interaction rules. (a) Zone of
repulsion (ZOR, grey), and zones of detection of orientations
(ZOO, blue) and positions (ZOP, red). The concentric zones
are characterized by different radii RR,O,P . The red triangles
represent the orientations of the APs. (b) Interaction rules.
The target swimming orientation, d̂+ here, is set by rotating
the mean relative position P of all APs in the ZOP (RP = ∞,
not depicted) by the angle Δ towards the mean orientation 〈û〉
of all APs within the ZOO. (c) Repulsion. If other APs are
present within the ZOR, the target orientation is set along the
reversed mean relative position vector of those APs to avoid
collisions.

Here, IZOP,ZOO denote the respective sets of particles in
the two zones around particle i and nZOP,ZOO are their
numbers (fig. 2(b)). To determine the target orientation,
Pi is rotated by an angle Δ either to the left (+) or to the

right (−), which generates two unit vectors d̂±
i . The one

closer to the average orientation 〈û〉i is then taken as the
target orientation for particle i. As will be shown later, the
transition from swarming to swirling of the APs strongly
depends on the magnitude of the deviation angle Δ. If
other APs are present within the ZOR of an AP, another
rule is applied. To avoid collisions, the target orientation
is set along the reversed mean relative position vector of
those APs within the ZOR as depicted in fig. 2(c).
The swirling state of a group with N APs is quantified

by introducing the rotational or swirling order parameter

OR =
1

N

N∑
i=1

(r̂i × ûi) · ez, (5)

where the unit vector ez is normal to the plane in which
the particle motion takes place. It ranges from −1 to 1,
where OR = 0 indicates swarming.

We choose our parameters as in the experiments [46],
where the APs have a diameter of σ = 6.3μm. The ra-
dius of ZOP, in which the positions are detected, is set to
RP = ∞ such that Pi points to the centre of the entire
group of APs, while the orientations are detected within
the smaller ZOO with a radius of RO = 25μm, approx-
imately four times the AP diameter. For the ZOR the
radius is set to RR = 8μm. This results in a surface-to-
surface distance of two particles placed at the ZOR center
and rim, which amounts to approximately a quarter of
the particle diameter. The APs self-propel with a velocity
v = 0.5μms−1 and rotate by applying a maximal torque

of Γmax = 25 kB T as measured in the experiments. They
are subject to translational and rotational diffusion, with
the diffusion constants DT = 1.4 ·10−2 μm2 s−1 and DR =
2.8 · 10−3 s−1 as reported in the experiments [46]. Their
maximal reorientation rate of ωmax = Γmax

kB T DR ≈̂ 4◦ s−1 is
determined using the rotational mobility from the Einstein
relation, DR/kB T . The individually applied reorienta-
tion rate ωi(t) = ωmax sin[ϕi(t)] towards the target orien-

tation d̂±
i (t) depends on the angle ϕi(t) = ∠[ûi(t), d̂

±
i (t)]

between the AP orientation ûi(t) and d̂±
i (t) [46]. Due

to the idealized particle interactions used in the simula-
tions, it is necessary to enhance the rotational diffusion
constant DR, which controls the systems rotational noise,
in order to obtain a good match with the experiments, as
discussed later in fig. 3. The best agreement is achieved
with D0

R = (8.3±0.5) ·10−3 s−1 ≈ 3 DR,exp, which we will
use in our simulations. To keep the measured maximal re-
orientation rate ωmax = Γmax

kB T DR constant, the maximal

torque is scaled down according to Γ̃max = Γexp
max D

exp
R /D0

R.
We perform Brownian dynamics simulations of the APs

in two dimensions, where r(t) and û(t) = (cos θ, sin θ) de-
note their position and orientation vectors, respectively.
To simulate the dynamics of an AP, one first determines
the target orientation and with it the rotational velocity
ω(t) = ωmax sin[ϕ(t)]. Then the dynamics is described by
two coupled Langevin equations

ṙ = v û+ ξT , (6)

θ̇ =
Γmax

kB T
DR sin[ϕ(t)] + ξR. (7)

Here, the random velocities ξT and ξR represent thermal
white noise with zero mean and normally distributed com-
ponents with respective variances

√
2 DT and

√
2 DR,

〈ξT 〉 = 0, 〈ξTi(t) ξTj(t
′)〉 = 2 DT δij δ(t− t′); (8)

〈ξR〉 = 0, 〈ξR(t) ξR(t′)〉 = 2 DR δ(t− t′). (9)

The random velocities of different particles are uncorre-
lated.
To solve eqs. (6) and (7), we apply a simple Euler inte-

gration,

r(t+Δt) = r(t) + v û(t) Δt+
√
2DTΔt WT , (10)

θ(t+Δt) = θ(t) +
Γmax

kB T
DR sin[ϕ(t)] Δt

+
√

2DRΔt WR, (11)

where WTi and WR are Gaussian random numbers with
zero mean and unit variance. A time step size of Δt = 0.2 s
corresponding to the image acquisition rate of 5Hz in the
experiments of ref. [46] is used, since it is small enough to
ensure proper integration of the dynamic equations (10)
and (11). The initial positions and orientations are ran-
domly distributed. They are drawn from normal distribu-
tions with zero mean and unit variance for the orientations
and a variance of 5σ for the positions. Due to the finite
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size of the simulated APs, collisions must be handled. This
is done after each time step by translating overlapping
particles symmetrically away from each other along the
connecting line. Several iterations are used until no more
overlaps are present. As in the experiments we simulate
N = 50APs.

Results. – We first discuss the phenomenology of our
simulations. At large enough deviation angles Δ, we in-
deed observe the formation of stable swirls as shown in
fig. 3(a). The trajectories of all 50 particles are depicted
during a period of 100 s. The swirl does not arise from a
perfect concentric rotation of the individual particles. In-
stead, due to translational/rotational diffusion and active
motion of the interacting particles, their paths show fre-
quent directional changes, which on larger time scales lead
to loose adherence to the group rotation (see the supple-
mentary video video1.mp4). If one follows the trajecto-
ries of neighbouring APs, frequent changes in their relative
positions and even reversals in the swimming directions of
single particles are visible, as shown in the supplementary
video video1.mp4. These changes in the swimming direc-
tion of single APs can lead to changes in the rotational
direction of the entire swirl, as the plots in fig. 3(b) de-
pict. During these reversals, the group generally enters a
metastable swarming or flocking state with OR ≈ 0 for a
short period of time, after which rotational order estab-
lishes again. This occurs either in the opposite (top and
the supplementary video video2.mp4) or same direction
(bottom) as the previous stable swirl.

To quantify the strength of swirling motion, we use the
swirling order parameter OR. However, averaging it over
time gives zero, since OR and −OR are equally proba-
ble. For this reason we consider the mean of the absolute
value, 〈|OR|〉, which shows a strong dependence on the
deviation angle Δ, as seen in fig. 3(c). At Δ = 0, the
APs aim to swim in direction of the group centre, which
leads to little rotational order but rather induces swarm-
ing. As Δ increases, the APs start to circle around their
common centre, as indicated by the increasing 〈|OR|〉. Uti-
mately, it reaches a maximum at Δmax = 78◦ ± 1◦, below
the deviation angle Δ = 90◦, which would correspond to
ideal circular motion of the APs. The reason is that the
group of APs increases in size for larger deviation angles,
as fig. 3(c) strikingly demonstrates, up to a point at which
the cohesion of the swirl is lost since fewer and fewer APs
are in the ZOO. This results in rapidly decreasing order
above Δmax. To quantify the spatial extent of a swirl, we
use the mean distance 〈r〉 of all particles from the group
centre. Note that our simulations perfectly match the ex-
perimental results as fig. 3(c) demonstrates, which enables
us to utilize them for further analysis of the swirling active
particles.

To investigate the steady swirling motion in more de-
tail, we plot the probability distributions P (OR,Δ) of the
swirling order parameter OR for different deviation angles
Δ in fig. 4. For small values of Δ, the distributions show

Fig. 3: Swirl formation at high deviation angles Δ for N =
50APs. (a) Particles forming a swirl rotating in clockwise di-
rection with Δ = 78◦. Particle trajectories during a period of
100 s are shown as lines. (b) Time evolution of the rotational
order parameter OR with Δ = 50◦. During reversals of their
rotational direction, swirls can enter a metastable swarming
state with OR ≈ 0 for a varying duration. Then, they either
reverse the rotational direction (top) or continue with the pre-
vious direction. (c) Mean magnitude of the order parameter,
〈|OR|〉, and spatial extent of the swirl, 〈r〉, plotted vs. devia-
tion angle Δ. The solid lines refer to simulations and symbols
to experiments in ref. [46]. Error bands and bars correspond
to the respective standard deviations.

a single large peak at OR = 0, which corresponds to the
swarming state. With increasing Δ, this peak diminishes
in size and symmetrically placed peaks at OR �= 0 de-
velop between Δ = 25◦ and 30◦. They correspond to APs
swirling in both possible directions. Without loss of gener-
ality we can write P (OR,Δ) in the form of the Boltzmann
distribution introduced in eq. (1). The experiments and
theoretical description in refs. [46,47] suggest choosing an
effective Landau-type free energy f of fourth order in OR

for the symmetry-breaking transition. However, a care-
ful inspection of the distributions in fig. 4 always shows
a weak maximum at OR = 0, even after the two peaks
at OR �= 0 have developed. The weak maximum corre-
sponds to the metastable swarming state, which the APs
assume during reversals of the swirling direction. These
maxima do not appear in the experimental results pre-
sented in [46]. We attribute this to the fact that, as men-
tioned by the authors, measurements in which the APs
enter this metastable state had to be discarded due to the
limited field of view in the experiment. In our simulations
we can easily include them. However, the corresponding
peaks cannot be described by a fourth-order model of f
in OR. For this reason we fit our data with a sixth-order
expansion of the effective free energy introduced in eq. (2)
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Fig. 4: Left: probability distribution P (OR,Δ) plotted vs. OR for different Δ. Right: parameters a, b, and c of the sixth-
order Landau-type model determined by fitting the probability distributions to the Boltzmann form of eq. (1). Solid lines are
quadratic, linear, or constant fits through the fitted parameters, respectively.

and obtain the probability distribution

P (OR,Δ) =
1

Z
exp

[
−(a O2

R + b O4
R + c O6

R)
]
. (12)

Here a, b and c are used as free fitting parameters in a
least-square fit. They are plotted vs. Δ in fig. 4. The
fits of P (OR,Δ) show good agreement with the data. In
particular, the peaks around OR = 0, which also occur at
large Δ and then correspond to the metastable swarming
state, are taken into account.
Note that the dependence of the coefficients a and b

on Δ agrees with the simplest possible forms. Since the
maximum of P (OR,Δ) at OR = 0 always requires a > 0
or a positive curvature of the effective free energy f , the
coefficient a cannot be linear in Δ as in a conventional
fourth-order Landau model. Accordingly, the next higher-
order approximation is a parabolic shape, which is nicely
demonstrated by the quadratic fit curve in fig. 4, right.
Furthermore, the coefficient b has to change sign, which
is necessary so that the two additional peaks at OR �= 0
can develop. Here, the simplest approximation is a linear
dependence in Δ, which again is in nice agreement with
our findings as the fit in fig. 4, right shows. Finally, the
sixth-order term in the effective free-energy expansion is
necessary to maintain stability. Interestingly, the corre-
sponding coefficient c is independent of Δ for Δ ≥ 20◦,
where it is needed for stability.
We use the effective free energy f(OR,Δ) of eq. (2) in

the fluctuating order parameter to further clarify the dy-
namic swirling transition. Following the explanations in
the introduction, we plot the state diagram in the a-b plane
using the constant c as determined above in fig. 6. For
b > 0 the free energy predicts a continuous transition at
a = 0, while for b < 0 the solid line at ac = b2/(4c) refers

to a discontinuous transition. The blue dots belong to all
the pairs of a, b values determined in fig. 4 for different
Δ, while the dashed line uses the parabolic and linear fits
for a, b, respectively. Starting from the the upper right at
Δ = 0, the dots move to the left with increasing Δ, as-
sume b < 0, and then cross the first-order transition line.
This clearly shows that the swarming-swirling transition is
discontinuous. The intersection between the system path
and the transition line yields a transition point Δ∗ ≈ 27◦.

As a consequence of the effective free energy in eq. (2),
the most probable order parameter bifurcates from Om

R =
0 for Δ < Δ∗ into both coexisting stable swirling states
with non-vanishing Om

R for Δ > Δ∗. The values for Om
R in

the ordered phase are determined by the two symmetric
global minima of the free energy in eq. (2) and are located
at

Om
R = ± 1√

3

√√
b2 − 3 a c− b

c
. (13)

In accordance with our previous discussion, the bifurcation
is discontinuous, as illustrated in fig. 5. While the dots
correspond to the values of a, b, and c determined for each
Δ, the solid line uses the respective fit functions from fig. 4,
right. The very good agreement shows the high quality of
the fits.

In a next step, we investigate whether varying the sys-
tem parameters will influence the observed swirling tran-
sition. We repeat the above analysis for three reduced
values of the rotational diffusion coefficient DR compared
to our default value D0

R, since we noticed that varying this
parameter leads to crucial changes in the observed tran-
sition. The resulting system paths are also presented in
fig. 6. One notices that when reducing the rotational dif-
fusion coefficient, the system path in the a-b plane moves
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Fig. 5: Most probable order parameter from eq. (13) plotted vs.
deviation angle Δ. Dots and solid lines correspond to values
obtained from a, b, c in fig. 4 and their respective fit functions.

Fig. 6: Dynamic state diagram in the a-b plane. With each set
of colored dots or crosses, the system path for increasing Δ is
indicated starting at the upper right with Δ = 0◦. Different
colors refer to the default value D0

R of the rotational diffusion
coefficient and smaller values 0.7 D0

R, 0.5 D0
R, and 0.3 D0

R,
respectively. The blue dashed line uses the fit functions of a
and b from fig. 4, right.

to the left. In particular, at 0.7 D0
R (red dots) the swirling

transition is localized at the tricritical point, while for
smaller coefficients the system paths intersect the second-
order branch of the transition line at a = 0, b > 0 and the
dynamic state transition becomes continuous. Thus, in the
region with a < 0 and b > 0 the effective free energy f has
a local maximum at OR = 0 and the corresponding prob-
ability distributions P (OR) a local minimum instead of a
peak. This is the range in which a fourth-order Landau-
type model can successfully describe the system. However,
as soon as b < 0, the sixth-order term in the free-energy
expansion is necessary to maintain stability. For a < 0
the local minimum at OR = 0 persists until a becomes
positive again. Then a peak of P (OR) at OR = 0 occurs,
corresponding to a metastable swarming state. Note, the
respective transition points move to decreasing deviation
angles whenDR is lowered. For the smallest rotational dif-
fusion coefficient 0.3 D0

R it is located at Δ∗ < 15◦. Finally,
we note that for decreasing DR the parameter c depends

more and more on Δ and, as opposed to the default value
D0

R, is no longer constant.

Conclusion. – The simulations of active particles with
social interaction rules presented in this letter can success-
fully reproduce the transition between unordered swarms
and stable swirls observed in experiments for a group of
50 particles [46]. The two dynamic collective states are re-
alized when varying the deviation angle Δ, which controls
the swimming direction chosen by individual active par-
ticles according to the social-interaction rules governing
their motion. For sufficiently large Δ, the active particle
groups create ordered swirls, while no such behaviour can
be observed when the deviation angle is too small. The
symmetry-breaking transition between those states can be
described with a Landau-type model of sixth order. The
model depends on the swirling order parameter OR and
the deviation angle Δ serves as a control parameter. This
approach suggests a weak discontinuous transition for the
swarming and swirling states occurring at Δ∗ ≈ 27◦. Fur-
thermore, we realized that the rotational diffusion coef-
ficient DR is the relevant parameter for influencing the
observed swirling transition. Interestingly, when lowering
DR, the transition becomes continuous.

In our simulations we closely follow the experimental
work of ref. [46] and employ the reported parameters.
Nevertheless, the analysis of ref. [47] on the same system
reports a critical behavior instead of the weakly discontin-
uous transition, which we observe. From the experimental
side the difference might be due to the fact that the exper-
imental setup does not fully take into account a possible
metastable swarming state occuring at large Δ [46]. The
existence of such a state at OR = 0 can only be described
by a Landau-type model of sixth instead of fourth order.
From the theoretical side, we note that our simulations
nicely capture the experimentally observed dependence of
〈|OR|〉 on Δ, as fig. 3(c) shows. Still, simulations need
to make simplifying assumptions so that experiments are
not fully replicated. In our case this could be, for example,
the implementation of particle collisions or the fact that
hydrodynamic interactions between the colloids are com-
pletely omitted. To resolve the issue of a possibly weakly
discontinuous transition, it might be worthwhile to further
investigate the existence of a metastable swarming state
in experiments.

There are three further directions we plan to pursue
with this system. First, social interactions are not instan-
taneous. Therefore, we will implement a time delay with
which the agent or active particle adjusts its new orien-
tation in response to the surrounding particles. It will be
interesting to explore how the observed dynamics change,
depending on the magnitude of this time delay. Second,
we will introduce variations in the deviation angle Δ for
single agents, or some distribution in Δ, and monitor the
influence on the swirling state. This approach will model
the fact that not all agents, such as fish, behave completely
identically or that some strongly deviate in their behavior
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from the group. Finally, variations in the detection radii
and the viewing angle, which is introduced to define a
field of vision for all particles [46], can be used to model
the different perceptions that agents might have of their
environment.
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Bechinger C. and Speck T., Phys. Rev. Lett., 110
(2013) 238301.

[24] Enculescu M. and Stark H., Phys. Rev. Lett., 107
(2011) 058301.

[25] Rühle F. and Stark H., Eur. Phys. J. E, 43 (2020)
26.

[26] Ivlev A. V., Bartnick J., Heinen M., Du C.-R.,
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