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Abstract. – We use the density matrix renormalization group method to study the ground-
state “phase” diagram and some low-energy properties of an antiferromagnetic spin-1 chain with
a next-nearest-neighbour exchange J2 and an alternation δ of the nearest-neighbour exchanges.
We find a line running from a gapless point at (J2, δ) = (0, 0.25± 0.01) up to a “gapless” point
at (0.73± 0.005, 0) such that the open-chain ground state is fourfold degenerate below the line
and is unique above it. A disorder line 2J2 + δ = 1 runs from δ = 1 to about δ = 0.136. To the
left of this line, the peak in the structure factor S(q) is at π, while to the right of the line, it is
at less than π.

While the spin-(1/2) Heisenberg antiferromagnetic chain has been extensively studied using
a variety of techniques [1], the corresponding spin-1 chain has been studied in much less
detail [2]-[5]. Interest in spin-1 chains grew after Haldane’s conjecture that integer spin chains
should have a gap while half-integer spin chains should be gapless. This observation was
based on a non-linear sigma-model (NLSM) field theory [6]. This approach can be generalized
to include dimerization (an alternation δ of the nearest-neighbour (nn) exchanges) and a
next-nearest-neighbour (nnn) exchange J2 [7], and it leads to interesting predictions. For
instance, the spin-1 model should be gapless at some critical value of δ. If the nnn exchange
is large enough, the spin chain goes over from a Néel-like “phase” to a spiral “phase” (1) and
a different kind of NLSM field theory is required [8]. This predicts a gap for all values of the
spin.

(1) We use the word “phase” only for convenience to distinguish between regions with different
modulations of the two-spin correlation function. The model actually has no phase transition from
Néel to spiral even at zero temperature.
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Fig. 1. – “Phase” diagram for the spin-1 chain in the (J2, δ)-plane. The inset shows the “phase”
diagram for the spin-(1/2) chain. The various features are explained in the text.

Real spin-(1/2) Heisenberg systems with both dimerization and frustration are now known [9].
However, the spin-1 analogues are yet to be synthesized. In what follows, we demonstrate that
a spin-1 system exhibits a very rich “phase” diagram. It is hoped that this will provide
motivation for experimental realizations of such systems.

In this letter, we study a spin-1 chain with both dimerization and frustration using the
density matrix renormalization group (DMRG) method [2]. We compare our results with
field-theoretic expectations as well as our recent study of the J2-δ model for a spin-(1/2) chain
[10]. The major surprise which we discover is a “gapless” (to numerical accuracy) point at
(J2 = 0.73, δ = 0) which is contrary to the field theory expectation. We suggest that this
point may be close to a critical point described by a conformal field theory (CFT) [11], [12].

We consider chains with an even number of sites with the Hamiltonian

H =
∑
i

[1− (−1)iδ]Si · Si+1 + J2

∑
i

Si · Si+2 , (1)

where J2 ≥ 0 and 0 ≤ δ ≤ 1. We study various regions in the (J2, δ)-plane using the DMRG.
The DMRG involves building up the chain to a desired number of sites starting from a very
short chain by adding two sites at a time. The initial chain of 2n sites (with n a small integer)
is diagonalized exactly. The density matrix (DM) for the left n sites is computed from the
ground state of the 2n-site Hamiltonian by integrating over the states of the right n sites. This
DM is diagonalized, and the n-site Hamiltonian is obtained in a truncated basis with m basis
vectors which are the eigenvectors of the DM corresponding to its m largest eigenvalues. The
Hamiltonian for the 2n + 2 chain is obtained in the (2s + 1)2m2-dimensional direct-product
subspace constructed using the basis of the left and the right halves of the 2n chain and the
full space of the two additional spins which are inserted in the middle. After obtaining the
ground state of the 2n+ 2 chain, the DM of half the chain, now with n+ 1 sites, is computed.
The procedure is repeated up to the desired chain length N . The DMRG allows us to study
a few low-lying states in a sector with a given value of the total spin Sz. The ground state is
always the first (lowest-energy) state in the Sz = 0 sector. The accuracy of the DMRG depends
crucially on the number of eigenvalues m of the DM which are retained. We have worked with
m = 100 to 120 over the entire (J2, δ)-plane after checking that the DMRG results obtained
with these values of m agree well with exact numerical diagonalizations of chains with up to
16 sites [4]. The chain lengths we studied varied from 150 sites for J2 > 0 to 200 sites for
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Fig. 2. Fig. 3.

Fig. 2. – Dependence of the gap on J2 for δ = 0.

Fig. 3. – Structure factor S(q) vs. q for J2 = 0.71, 0.72, 0.725 and 0.735 at δ = 0.

J2 = 0. We tracked our results as a function of N to check that convergence had been reached
well before 150 sites. We find that the numerical results are much better convergent for open
chains than for periodic chains, a feature generic to DMRG studies [13], [14]. Hence all the
data shown in fig. 1 to 3 are based on open-chain results.

The “phase” diagram obtained is shown in fig. 1. A solid line marked A runs from (0, 0.25)
to about (0.22±0.02, 0.20±0.02) shown by a cross. Within our numerical accuracy, the gap is
zero on this line and the correlation length ξ is as large as the system size N . The rest of the
phase diagram is gapped. However, the gapped portion can be divided into different regions
characterized by other interesting features. On the dotted lines marked B, the gap is finite and
ξ is much smaller than N . On the dashed line C extending from (0.65, 0.05) to about (0.73, 0),
the gap appears to be zero (to numerical accuracy), and ξ is very large but not as large as N .
In regions II and III, the ground state for an open chain has a fourfold degeneracy, whereas it
is non-degenerate in regions I and IV. The dashed line marked D is defined by 2J2 + δ = 1,
has an exactly dimerized ground state, and extends from (0, 1) to about (0.432, 0.136). The
line E separating regions II and III begins at about (0.39, 0) and extends up to region V. In
regions I and II, the peak in the structure factor is at π (Néel), while in regions III and IV,
the structure factor peak is at less than π (spiral).

The phase diagram of the spin-1 chain is much more complicated than that of a spin-(1/2)
chain shown in the inset of fig. 1. For spin-(1/2), there is a gapless line from (0, 0) to (0.24, 0).
The rest of the parameter space is gapped. The line 2J2 + δ = 1 extends throughout the
(J2, δ)-plane and separates the Néel “phase” from the spiral “phase”.

For reasons explained below, the “gapless” point at (0.73, 0) is quite unexpected. So we
examine that point more in detail. Figure 2 shows a plot of the gap vs. J2 for δ = 0. It is
non-monotonic and is “gapless” at about J2 = 0.73. In regions II and III, i.e. for J2 ≤ 0.735,
the open-chain ground state is found to be fourfold degenerate. By comparing the energies of
the low-lying states in sectors with Sz = 0, 1 and 2, we find that the four ground states have
S = 0 and 1. We therefore define the gap as the energy difference between the first state in
the Sz = 0 sector and the second state with Sz = 1, since the gap to the first state with Sz = 1
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is zero. This is the correct definition of the gap since the finite ground-state degeneracy does
not contribute to thermodynamic properties. In region IV, i.e. for J2 > 0.735, the ground
state is found to be unique with S = 0. So the gap is defined as the energy difference between
the first states in the Sz = 0 and Sz = 1 sectors. In all cases, we extrapolate the gap ∆ to
infinite system size by fitting it to N through the formula ∆ = A + B/Nα , and finding the
best possible values of A, B and α for each J2. For J2 ≤ 0.735, we also studied the separation
between the second and the third states with Sz = 1. This separation is appreciably larger
than the extent of non-monotonicity in the region around J2 = 0.5. This confirms that the
non-monotonic behaviour in that region is not an artifact arising from convergence of the
DMRG to higher excited states.

Figure 3 is a plot of the static structure factor S(q) vs. q at four values of J2 near 0.73
obtained from open-chain studies with 150 sites [14]. For J2 between 0.725 and 0.735, we see
a pronounced peak at about qmax = 112◦. The peak decreases in height and becomes broader
as one moves away from this interval. We estimate the maximum value of ξ to be about 60
sites. (Interestingly, Tonegawa et al. [4] did find a pronounced peak in S(q) at J2 = 0.7, but
they did not investigate it further.) It is natural to speculate that (0.73, 0) lies close to some
critical point which exists in a bigger parameter space. We believe that the appropriate critical
point may be the one discussed in ref. [11], [12]. Reference [11] solves a spin-1 chain with nn
interactions of the form

H =
∑
i

[Si · Si+1 + (Si · Si+1)2] , (2)

and finds gapless modes at q = 0 and ±120◦. This implies a peak in the structure factor at
q = 120◦ which is not very far from the value we observe numerically. Reference [12] argues
that the long-distance physics of this model is described by a CFT with SU(3) symmetry (2).

The field-theoretic analysis of spin chains with the inclusion of J2 and δ proceeds as follows.
In the S → ∞ limit, a classical treatment shows that the ground state is in the Néel phase
for 4J2 + δ2 < 1, and in a spiral phase for 4J2 + δ2 > 1. To next order in 1/S, one derives
a field theory to describe the long-wavelength low-energy excitations. The field theory in the
Néel phase is the O(3) NLSM with a topological term [6], [7]. The Lagrangian is

L =
1

2cg2
φ̇φφφφφ

2 − c

2g2
φφφφφφ′2 +

θ

4π
φφφφφφ · φφφφφφ′ × φ̇φφφφφ, (3)

where φφφφφφ2 = 1, c = 2S(1 − 4J2 − δ2)1/2 is the spin-wave velocity, g2 = 2/[S(1 − 4J2 − δ2)1/2]
is the coupling constant, and θ = 2πS(1− δ) is the coefficient of the topological term. (Dots
and primes denote time and space derivatives, respectively.) Note that θ is independent of
J2 in the NLSM. For θ = π mod 2π and g2 less than a critical value, the system is gapless
and is described by a CFT with an SU(2) symmetry [7], [12]. For any other value of θ, the
system is gapped. For J2 = δ = 0, one therefore expects integer (half-integer) spin chains to
be gapped (gapless). This is known to be true even for small values of S like 1/2 (analytically)
and 1 (numerically) although the field theory is only derived for large S. In the presence of
dimerization, one expects a gapless system at certain special values of δ. The special value is
predicted to be δc = 0.5 for S = 1. We see that the existence of a gapless point is correctly
predicted by the NLSM. However, according to the DMRG results, δc is at 0.25 for J2 = 0
[3] and decreases with J2 (see fig. 1). These deviations from field theory are probably due to
higher-order corrections in 1/S which have not been studied analytically so far.

(2) At the SU(3) symmetric critical point, the two-spin correlation should asymptotically decay as
the 4/3 power of the distance [12]. We tried to verify this but the finite correlation length prevented
us from obtaining an accurate estimate of the power.
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In the spiral phase, it is necessary to use a different NLSM which is known for δ = 0 [8].
The field variable is an SO(3) matrix R and the Lagrangian is

L =
1

2cg2
tr
(
Ṙ
T
ṘP0

)
− c

2g2
tr
(
R′TR′P1

)
, (4)

where c = S(1 + y)
√

1− y2/y, g2 = 2
√

(1 + y)/(1− y)/S with 1/y = 4J2; P0 and P1 are
diagonal matrices with elements (1, 1, 2y(1−y)/(2y2−2y+1)) and (1, 1, 0), respectively. Since
there is no topological term, there is no apparent difference between integer and half-integer
spin chains. A one-loop renormalization group and large-N analysis [8] indicate that the
system should have a gap for all values of J2 and S, and there is no reason for a particularly
small gap at any special value of J2. The “gapless” point at J2 = 0.73 for spin-1 is therefore
surprising.

For δ < 0.25 and J2 = 0, the spin-1 chain is known to exhibit a “hidden” Z2 × Z2

symmetry breaking described by a non-local order parameter [3], [15]. This leads to a fourfold
degeneracy of the ground state for the open chain. The degeneracy may be understood in terms
of spin-(1/2) states living at the ends of an open chain whose mutual interaction decreases
exponentially with the chain length [15]. We have oberved this ground-state degeneracy at
all points in regions II and III in fig. 1, where the gap between the singlet and triplet states
vanishes exponentially with increasing chain length. In regions I and IV, the ground state
is unique. The situation is reminiscent of the Z2 × Z2 symmetry breaking mentioned above.
However, we have not directly studied the non-local order parameter using the DMRG.

We have examined the structure factor S(q). Since there is no long-range order anywhere
in the (J2, δ)-plane (except for algebraic order on the line A in fig. 1), S(q) generally has a
broad peak at some qmax. In regions I and II in fig. 1, qmax is pinned at π, while in regions III
and IV, qmax < π. Above the curve ABC, the crossover from the Néel to the spiral “phase”
occurs across the straight line D given by 2J2 + δ = 1. Below ABC, the crossover has been
determined numerically and occurs across the line E. The region of intersection between the
crossovers from “Néel” to “spiral” and from fourfold degeneracy to a unique ground state
is a small “hole” (region V) in the “phase” diagram centred about the point (0.435, 0.12).
Points in this “hole” turned out to be extremely difficult to study using the DMRG because
of convergence difficulties with increasing chain lengths.

The segment D of the straight line 2J2 + δ = 1 running from δ = 1 to about δ = 0.136 can
be shown to have an exact ground state of the dimerized form ψ = [1, 2][3, 4] . . . [N − 1, N ],
where [i, j] denotes the singlet combination of the spins on sites i and j. (This will be shown
elsewhere.) Since the segment D has an exact ground state with an extremely short correlation
length (essentially, one site), and since there is a crossover from a Néel to a spiral “phase”
across it, we may call D a disorder line just as in the spin-(1/2) case [10].

To summarize, we have studied a two-dimensional “phase” diagram for the ground state
of an isotropic spin-1 chain. It has surprising features like a “gapless” point inside the spiral
“phase”. We have suggested that this point is close to a critical point of a particular kind.
It would be interesting to establish this more definitively. In any case, our results show that
frustrated spin chains with small values of S may exhibit features not anticipated from large-S
field theories.

***

We thank B. Sriram Shastry for stimulating discussions, and Biswadeb Datta for
assistance with the computer systems.
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