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PACS. 42.50Ne – Dynamics of non-linear optical systems; optical instabilities, optical chaos,
and optical spatio-temporal dynamics.

PACS. 42.50Rh – Optical solitons; nonlinear guided waves.
PACS. 42.79Ta – Optical computers, logic elements, interconnects, switches; neural networks.

Abstract. – We show the possibility of controlling the formation, the interaction and erasure
of localised structures in a passive non-linear resonator. The localised structures , which have
the character of stable 2D spatial solitons, are highly degenerate solutions which develop in the
presence of modulational instabilities and their position in the transverse profile of the field can
be decided by suitably tailoring the driving external field. The results indicate the possibility
of realizing optical memories based on localised structures arrays.

The possibility of realizing two-dimensional spatial soliton-like structures in the transverse
field profile of broad-area non-linear systems, contained in optical cavities, has recently at-
tracted much interest for the realization of novel optical information encoding and processing
procedures. While in the purely dispersive and Hamiltonian configuration, described by the
non-linear Schrödinger equation, the 2D spatial solitons are unstable vs. diffractive catastrophic
collapse, in absorptive-dispersive driven systems with saturation, evidence of stable soliton-like
structures has been found [1]-[4]. We focus on the case where these phenomena arise in the
presence of a modulational instability (as in [2],[3],[4]), and have the character of Localized
Structures (LS) [5] where portions of the field-modulated profile coexist in the transverse
plane with a homogeneous background.

The possibility of controlling the excitation process of one or more independent LS having
the character of 2D solitons, the investigation of LS interaction and the procedures to erase a
single LS without affecting the others, is the subject of this letter.

Precisely, we consider an optical ring cavity with plane mirrors, containing a homogeneously
broadened collection of two-level atoms with transition frequency ωa. We call ωc the frequency
of the cavity resonance closest to ωa and assume that the free spectral range is large enough to
ensure single longitudinal mode operation. The cavity is driven by a homogeneous input field
at frequency ω0 = ωa. The system is properly described by the Maxwell-Bloch equations in
the paraxial and mean-field approximations which have been introduced in [6]. In the limit of
fast atomic relaxation, after adiabatic elimination of the atomic variables, the model reduces
to the field equation alone:

∂

∂τ
F (x, y, τ) = −

{[
(1 + iθ)− i∇2

⊥
]
F (x, y, τ)− Y +

2CF (x, y, τ)
1 + |F (x, y, τ)|2

}
, (1)
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Fig. 1. – Steady-state curve for C = 5.4, θ = −1. The broken line plots the part where the modula-
tional instability develops and Yc indicates its threshold . The dash-dotted line plots the modulated
branch. Arrows indicate the region of coexistence between the homogeneous and the hexagonal
solution. The instabilty region broadens with increasing C, with larger coexistence domains where LS
are stable.

where F, Y are the normalized slowly varying amplitudes of the intracavity and driving field
respectively; Y is real for definiteness. The time is defined as τ = κt, where κ is the cavity
linewidth, the transverse coordinates x and y have been normalized to

√
λL/4πT , where λ

is the wavelength, L is the cavity length and T is the transmissivity of the cavity mirrors. C is
the bistability parameter [7], the Laplacian operator ∇2

⊥ = ∂2

∂x2 + ∂2

∂y2 describes diffraction
and θ is defined as θ = (ωc − ω0)/κ.

Numerical simulations have been performed by using a split-step code with at least a
128× 128 square spatial grid and periodic boundary conditions. The homogeneous solutions
at steady state are readily obtained as

Y 2 = I

{[
1 +

2C
1 + I

]2
+ θ2

}
(I = |Fst|2) . (2)

Proper choice of the parameters leads to the well-known S-shaped curve, where modulational
instabilities leading to pattern formation [6] have been studied in [8]: The instability leads
to formation of a stationary regular hexagonal lattice above threshold, and there are wide
parameter domains where this instability is such that there is an interval of the input intensity
values where the heagonal branch coexists with a stable homogeneous solution. Figure 1 shows
the stable and unstable portions of the steady-state curve and the interval of coexistence.

Previous works dealing with LS formation always used a suitable initial field profile to excite
a localised structure [1]-[3],[9] with a homogeneous input field profile Y . However, to encode
information via the LS, we must use an external control channel which is provided by the
input field Y . Precisely, we introduce a suitable modulation of Y in order to create a localised
structure in the transverse plane, i.e. we superimpose a Gaussian profile (control beam) to the
homogeneous field (holding beam) Yhom for a certain time tinj, the maximum of the Gaussian
being located at the transverse point (x0, y0) where we want the LS to be excited; after that
time, the homogeneous field profile is restored. In practice, this is obtained by shining a
narrow laser pulse in the optical cavity. Hence, the total input field Y appearing in eq.(1) has
now the form

Y (x, y, τ) =

{
Yhom + ξ exp

[
− 1

β2 [(x− x0)2 + (y − y0)2]
]

exp[iϕ], τ ≤ τinj,

Yhom, τ > τinj,
(3)
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Fig. 2. – a), c), d): Output intensity transverse configuration with (respectively) one, two and 21 LS.
Parameters are as in fig. 1, with Yhom = 6.5. Black corresponds to high intensity, white to low. b) The
build-up of the LS is plotted by different line styles (full, broken, dotted) corresponding to different
times. The full line indicates the LS at regime. ξ = 0.5, β = 1.6, τinj = 120.

with Yhom in the interval of coexistence between the homogeneous solution and the hexagonal
branch.

Under suitable choice of the Gaussian parameters which will be discussed below, the output
field profile builds up a high-intensity peak at (x0, y0) (see fig. 2 a), b)). The characteristics of
the resulting localised structure showed that its intensity, phase and radius match very well
those of the hexagonal lattice’s peaks; checks performed by integrating the full model of [6]
in the limit of atomic relaxation rates much larger than κ, but without adiabatic elimination
of the atomic variables, showed that identical LS can be excited with no discrepancy in their
intensity or radius within the grid granularity.

By subsequently shining bright spots at different positions in the Y (x, y) profile, several
independent LS can be “written” at desired locations. Figures 2 c), d) show examples with
2 and 21 LS. We can heuristically regard the amplitude modulation as a local increase of the
input intensity which locally brings the system above the bifurcation threshold, so that in a
region of the plane around (x0, y0) the system can realize a modulated solution in the form
of a number of LS. Thus, it is necessary (but not sufficient) that ξ is equal to or larger than
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Table I. – The values of the parameters are C = 5.4, θ = −1 (hence Yc = 6.75), Yhom = 6.5, τinj = 6.
The table shows, for each value of β, the minimum value of ξ for developing a LS. For β > 4 more
than one LS is created.

β 0.8 1.6 2.4 4.0
ξ + Yhom 7.5 6.9 6.8 6.75

Yc−Yhom (Yc is defined in fig. 1). Furthermore, τinj must be sufficient (depending on ξ and β)
to develop in the output field a peak sufficiently high to locally bring the system state far from
the attraction basin of the homogeneous solution and close to the modulated solution; hence
the larger ξ, the shorter is the minimum injection time required to build a stable LS. The
width β measures the region where the system is made able to develop a stable modulated
solution. If β is too small, this process will be impossible or very difficult; if β is much larger
than the typical wavevector of the hexagonal lattice, one obtains, for example, several LS or
a whole portion of the hexagonal lattice. The dependence on β and ξ is illustrated in table I.

These results hold when the relative phase ϕ vanishes (see eq. (3)); there exist, however,
large intervals of ϕ where the LS is easily obtained, as shown in table II. Hence some control
of the phase is necessary, but it is not critical.

The question arises now about the maximum density of independent LS that can be
achieved, and what happens when the LS interact. It is thus essential to evaluate the minimum
distance from an existing localised structure at which a second one can be created, without
interacting with the former.

A naive idea about the interaction of two (or more) LS can be grasped if one thinks that the
LS is a single intensity peak, originally belonging to a hexagonal lattice. It is thus intuitive
to assume that the two subelements of the lattice will interact when their distance is on the
order of or smaller than the lattice transverse wavelength. Though this is a simplification, the
idea is fundamentally substantiated by our results.

We base our picture on extended sets of simulations in which the second LS is excited at
locations progressively closer to the first one, by using the same Gaussian form (3) with ϕ = 0.
Two critical distances can be defined: we shall indicate them by Dcr and dcr (with Dcr > dcr ).
Let d be the distance between the existing localised structure and the transverse plane point
where the Gaussian in the input field profile is centred, in order to excite a second structure;
then we find the following:
1) if d > Dcr, a second independent LS is created;
2) if Dcr > d > dcr, the two LS interact; the result of the interaction is that they move apart,
until they reach a distance Dcr;
3) if d < dcr, the existing localised structure may be erased and in this case a fully homoge-
neous profile is left.

It turns out that Dcr is slightly larger (5–10%) than the hexagonal-lattice wavelength λ: for
example, for C = 5.4, θ = −1, Yhom = 6.5, one finds Dcr = 6.7, while λ = 2π. The value of dcr

for the same set of parameters is 4.7, and in general, dcr is somewhat smaller (70–90%) than λ.

Table II. – The minimum τinj necessary to develop a LS is given as a function of the phase ϕ. Where
such time diverges, the table reports no. Parameters are C = 5.4, θ = −1, Yhom = 6.5.

ϕ 0 π/10 2π/10 3π/10 4–16π/10 17π/10 18π/10 19π/10

min 4.8 4.8 5.2 7.1 no 12.0 6.4 5.2τinj
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Fig. 3. – By injecting a narrow Gaussian beam closer to a LS than dcr, one can erase it. a) and b) the
new and the old soliton interacting; c) and d) annihilation of the LS and restoring of the homogeneous
profile (the input Gaussian has been switched off by now). C = 5.4, θ = −1, Yhom = 6.5, ξ = 0.5,
β = 0.8, τinj = 80.

It is remarkable that for d < dcr the existing LS may be cancelled, this process allows to
turn off any soliton without influencing the others, locally restoring the homogeneous profile,
as shown in fig. 3. However, this erasing procedure does not seem useful in practice, because
it works only under a rather critical control of the parameters τinj and β. A much better
procedure is identified by taking ϕ = π in eq. (3), so that the inhomogeneous contribution is
subtracted from the homogeneous background. When this “dark spot” is exactly superimposed
to the existing LS, it locally creates the conditions to erase it as is shown in fig. 4. Here the
value of ξ equals Yhom, but also smaller values of ξ are enough to obtain the result. The
relevant figure in this case is the minimum value of τinj which causes the erasure of the LS for
a given value of ξ. We performed extended simulations to determine the couples (τinj, ξ); an
example is shown in table III.

Fig. 4. – By local control of the input beam phase, the injected Gaussian has now ϕ = π. A “hole”
is formed in the field profile which depletes the existing LS until it is cancelled. Parameters are as in
fig. 3.
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Table III. – For each value of ξ we indicate the minimum value of τinj necessary to obtain erasure.
Parameters are as in table I.

ξ 0.5 0.4 0.3 0.2 0.1
τinj 3.6 4.2 5.4 8.6 20.0

As a rule of thumb, the product ξτinj is constant. The advantage of this procedure is its
robustness relatively to the choices of β and τinj: τinj has to be larger than a minimum value,
while it has no upper bound to satisfy, opposed to what happens in the case of fig. 3. When
τinj is large, there is the formation of a dark spot also in the output field profile which finally
returns to the homogeneous configuration. This process is robust also with respect to the
Gaussian phase ϕ: a broad set of values for ϕ exists where the cancellation takes place (for
the set of parameters of fig. 3, one finds cancellation for −7π/10 ≤ ϕ ≤ 13π/10).

In conclusion, we showed how recently discovered localised structures in a non-linear ab-
sorbing cavity (presumably the phenomenology is identical in the case of lasers with saturable
absorbers) can be turned on and off by injecting narrow laser pulses. Basic mechanisms of
structure excitation and interaction have been tailored to LS manipulation. The results have
been illustrated for a specific choice of the values for C and θ, but the same picture holds over
extended ranges of these parameters. Our analysis has been strictly deterministic, and in the
presence of noise the LS undergo a slow random walk in the transverse plane. However, as
shown by Firth and Scroggie [3] an appropriate phase modulation of the input field profile is
able to pin down the position of the LS. Hence the results of [3] together with those of this
work, demonstrate the possibility of realizing an array processor (which could be used, for
example, as an optical memory) where the LS behave as pixels which can be turned on and off
in a controlled way. For the first time in the field of Non-linear Optical patterns [10], we have
shown here the possibility of operating full control of the transverse field configuration; this
result follows from the fact that the LS are independent entities (when their distance is larger
than Dcr). A key point for the future is to study the behaviour of LS when the background
profile of the input field is not perfectly flat but is, e.g., a shallow Gaussian, especially in the
presence of phase modulation and noise.
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