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Abstract. – We introduce a symbol sequence generator producing sequences with long-range
correlations. We analytically derive the scaling behaviour of block entropies. A similar scaling
behaviour was suggested for natural information carrying symbol sequences, e.g. texts.

Introduction. – A symbol sequence generator is a set of deterministic or stochastic or both
rules to construct symbol sequences. Important questions are the strength and the range of
correlations between the symbols.

Our aim is to find a generator producing sequences similar to natural, evolutionary created
sequences, like texts [1], [2]. Information processing is one characteristic of living creatures.
Reproduction, mutations, and variety play a central role in the evolution of life [3]. Conse-
quently, our generator contains deterministic and stochastic rules.

In order to analyze the syntax of the sequences, one can use statistical tools. Let
A1, A2, . . . , An be a subsequence or word of n symbols from an alphabet of λ different symbols.
The probability of finding this n-word in the whole sequence is denoted by p(A1, A2, . . . , An).
The block entropy of words of length n is defined by

Hn := −
∑

(A1,...,An)

p(A1, . . . , An) log p(A1, . . . , An) . (1)

The Hn can be interpreted as the mean uncertainty about the prediction of an n-word. The
average uncertainty per symbol is H(n) := Hn/n. Another quantity is the conditional entropy
defined by

hn := Hn+1 −Hn . (2)

The hn establish a measure of the mean uncertainty about the prediction of a symbol follow-
ing n known symbols. McMillan and Khinchin have shown [4], [5] that

h := lim
n→∞

H(n) = lim
n→∞

hn . (3)
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The limit h is named entropy of the source.
If the conditional entropies hn decay exponentially, one cannot essentially improve the

prediction of the next symbol even for relatively small n. This means that there exist only
short-range correlations between the symbols.

If the hn show a subexponential decay or a power law decay, then there are long-range cor-
relations between the symbols. Even for large n one can considerably improve the prediction.

Szépfalusy and Győrgi have shown that a special weak intermittent system leads to hn ∼
1/nα, α > 2.5 with h > 0 [6].

Self-similar sequences, which are deterministic and fully calculable sequences, have been
studied by Grassberger [7], Gramss [8], and ourselves [1], [9]-[11]. They show a hn ∼ 1/nα, α =
1 law with h = 0.

Numerical analyses of text and music sequences yield hn ∼ 1/nα with 0 < h ¿ 1 and
α = 0.5 for texts and 0.5 ≤ α ≤ 1 for music [2], [12], [13]. The exact exponents are difficult
to extract from the empirical material. DNA sequences are strongly different from text and
music on the statistical level. They have been studied in [14], [15].

In this paper we introduce a symbol generator producing binary symbol sequences. We
will show that a resulting sample sequence gives rise to a subexponential decay of conditional
entropies hn ∼ 1/nα, α < 1. For α = 0.5 we analytically derive an upper and a lower bound for
the block entropies. Since these bounds essentially obey the same scaling law, namely a square
root behaviour, we conclude that the overall scaling of block entropies necessarily has to be
the same. Finally, a numerical example will be provided to validate our analytical results.

Description of the generator. – Starting from a series of equidistributed n-words, i.e. we
have 2n

1−α
different n-words with equal probability p(A1, . . . , An) = 1/2n

1−α
, obviously will

result in a scaling law Hn ∼ n1−α, respectively, hn ∼ 1/nα. However, there exists no
simple construction method yielding a (binary) sequence with such a related series of word
distributions.

Nevertheless, the above trivial connection motivates to try the following sequence generator.
(For the sake of simplicity we restrict to α = 0.5 in the second and third sections. The general
case will be discussed in the conclusions.)

First choose a length nk0 := 22k0 with arbitrary k0 ≥ 0. Out of all generally possible 2nk0

words collect 2(2k0 ) different sequences in a sample set. To construct a sequence of length
nk0+1 one has to independently and randomly select two words from this sample set (note
that both selected words may be identical). Now both such selected words are considered as
building blocks. They are concatenated and, in the sequel, the resulting sequence of length
nk0+1/2 is repeated yielding a sequence of length nk0+1.

In this manner 2(2k0+1) different such sequences of length nk0+1 can be constructed. Below
these elements will be considered as “main words”. All of those, again, are collected in a new
sample set and the generator proceeds iteratively as explained above, i.e. with twice random
selection, concatenation and repetition.

For an illustration, take a look at fig. 1 which exemplifies this construction process starting
with k0 = 0, i.e. n0 = 1. Upper and lower bounds to the Hnk , respectively hnk , derived below
are valid only for k ≥ k0.

Scaling behaviour for the block entropies. – In this section we show how to relate the
probability distribution p(A1, . . . , Ank) of nk-words to a sample sequence produced by the
above-described generator.

In practice, to extract the probability distribution one simply should do overlapping word-
counting. Here, however, we will employ analytical reasoning to estimate p(A1, . . . , pAnk ) and,
in the sequel, to derive bounds for nk-block entropies.
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Fig. 1. – Sequence generator, α = 0.5.

To get the probability of a word of length nk, one has to count the sample: one of 2
√
nk

main words follows every main word of length nk. The sample consists of 22
√
nk different words

of length 2nk with equal probability. We count overlapping and we have to count the words
starting on the first nk positions in a word of the sample.

In the following we omit the index k at n for reasons of clarity.
First we calculate an upper bound for Hn. We assume all occurring words in the sample to

be different. We have 2
√
n2
√
nn words with probability p = 1/(2

√
n2
√
nn). This yields

Hn = 2
√
n+ logn . (4)

Instead of hn = Hn+1 −Hn, one can approximately write hn = d
dnHn:

hn =
1√
n

+
1
n
. (5)

For the entropy of the source we get

h = lim
n→∞

hn = 0 . (6)

The reason for h = 0 is that the portion of randomly selected symbols vanishes for nk → ∞.
To be specific: the portion of randomly selected symbols is 1√

nk
.

Now we calculate a lower bound for the Hn. Our ansatz becomes better for larger n. In
the following we consider two groups of words that have a contribution of 2

3 to the standard
words.

The first group is composed by the words that start in the middle of a first main word and
end in the middle of the next main word. Most of these words occur only once in the sample
because outside the word one does not randomly select a symbol (the second half of a main
word is the same as the first half). They are named minimum class words or mc-words. But
if the main words are similar, then the word in the middle can also occur at other positions
in the first main word and the frequency is greater than one.

A main word of length n consists of four main words of length n
4 : A, B, C, and D are

different main words of length n
4 . The following compositions of main words contribute to the

mc-words.
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1st main word AA AA AB AB AB AB AB ,
2nd main word BB BC BA CA BC CD CC .

It is easy to calculate the number of different words. For the first row we get A: 2
√

n
4 and

B: 2
√

n
4 − 1 different words. This yields 2

√
n
4 (2
√

n
4 − 1) different words. The whole table leads

to (2
√
n − 2

√
n
4 )2 different words. Mc-words also occur on other positions in the first main

word. The last

n

8
+

n

32
+

n

128
+ . . .+ 2 =

log4 n∑
j=2

2n
4j
, (7)

n

8
+

n

32
+

n

128
+ . . .+ 2 =

n

6
− 2

3
(8)

positions before and including the position n
2 in a main word are repetitions of earlier positions.

If the mc-word finishes at one of these positions, then outside the word one does not randomly
select a symbol and the word occurs only once. Positions after n

2 are repeated later in the first
main word. This yields a contribution of n

6 + 1
3 positions.

In total we have (2
√
n − 2

√
n
4 )2(n3 −

1
3 ) ∼ 22

√
n(n3 −

1
3 ) different words with probability

p = 1/(22
√
nn). The contribution to the normalization is 1

3 for n→∞.
The second group consists of words starting at positions around n

4 . One randomly selects a
symbol

√
n times in the contribution of the first main word and one randomly selects a symbol√

n
4 times in the contribution of the second main word. This yields 2

3
2
√
n different words at

one position. The last

n

8
+

n

32
+

n

128
+ . . .+ 2 =

log4 n∑
j=2

2n
4j
, (9)

n

8
+

n

32
+

n

128
+ . . .+ 2 =

n

6
− 2

3
(10)

positions before and including the position n
4 are repetitions of earlier positions. If a word

finishes at one of these positions, then it also belongs to this class. To the last expression one
has to add 1 for the word at position n

4 + 1 and to multiply it by 2 because the arguments are
also valid for the words starting around position 3

4n in the first main word.
In total we have 2

3
2
√
n(n3 + 2

3 ) different words with probability 1/(2
3
2
√
nn). The contribution

to the normalization is 1
3 for n→∞.

The entropy of these two contributions is

Hn ∼
7
6
√
n+

2
3

logn+O(
1√
n

) . (11)

It is impossible that the gradient of the scaling law of Hn is smaller than the right side
of eq. (11). Otherwise the part of the entropy of the words contributing to the last 1

3 of the
normalization has the form −

√
n+ f(n) and the gradient of the scaling law of f(n) is smaller

than
√
n, for instance, f(n) ∼ logn. The expression −

√
n+f(n) would then become negative.

This is forbidden because −p log p ≥ 0.
Figure 2 shows the rank-ordered word distributions for word lengths n = 16 and n = 64.
Figure 3 shows the block entropies Hn. One can see that the numerical data of the entropies

Hn of our generated sequence are smaller than the upper bound (4) and greater than the lower
bound (11).
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Fig. 2. Fig. 3.

Fig. 2. – Rank-ordered word distributions.

Fig. 3. – Block entropies.

The lower and the upper bound for Hn yield a

Hn ∼ a
√
n+ b logn (12)

law (a and b are constants) and, consequently, eq. (12) follows for our numerical data.
For hn we get

hn ∼
c√
n

+
d

n
(13)

(c and d are constants). This scaling behaviour indicates long-range correlations and was found
for texts [2], [12], [13].

Conclusions and discussion of the results. – We have related an exceptional entropy scaling
behaviour to a special sequence generator. There exists an interplay between random selection
and repetition.

Referring to the number of different words the random selection causes the factor 2
√
n and

the repetition is responsible for the factor n. The numerator 2
√
n of the probabilities also

results from the random selection. Similar rules may play a role in the grammar of texts [16].
Finally, we extend our results to arbitrary α: The generator works for 0 < α < 1 and for

1
1−α being an integer. Again, one starts by choosing a length nk0 := 2k0/(1−α) with arbitrary

k0 ≥ 0. In analogy, out of all generally possible 2nk0 words one collects 2(2k0 ) different ones in
a sample set. To construct a sequence of length nk0+1 one has to independently and randomly
select two words from this sample set (both selected words may be identical). Finally, they are
concatenated and, in the sequel, 2α/(1−α) copies of the resulting sequence are produced and
concatenated yielding a sequence of length nk0+1. For the estimation of nk-word distributions
and derivation of upper, respectively lower bounds analogous reasoning is straightforward.
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