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Abstract. – The global phase structure of the bosonic-thermal-string ensemble is described in
proper reference to the thermal duality symmetry as well as the thermal stability of modular
invariance for the dimensionally regularized, D = 26 closed-bosonic-thermal-string theory within
the framework of the thermofield dynamics.

Building up thermal-string theories based upon the thermofield dynamics (TFD) [1] has
gradually been endeavoured in leaps and bounds [2]-[10]. In previous papers of ourselves [6], [9],
the physical significance of the thermal duality relation [11], [12] has been examined in relation
to the infrared behaviour of the one-loop cosmological constant for closed-thermal-string
theories of the critical dimension within the TFD framework. In the present communication,
the TFD algorithm of the D = 26 closed-bosonic-thermal-string theory is commented and
exemplified at any finite temperature à la ref. [6] and ref. [9] through the infrared one-loop
self-energy amplitude of the dilaton, graviton and antisymmetric tensor particle. Physical
aspects of the TFD thermal-string amplitude are then described in connection with the global
phase structure of the thermal-string ensemble.

The one-loop self-energy amplitude A(k1; ζ1, ζ2;β) of the massless thermal tensor boson
is expressed as A(k1; ζ1, ζ2;β) = A(k1; ζ1, ζ2) + Ā(k1; ζ1, ζ2;β) at any finite temperature in
the D = 26 closed-bosonic-thermal-string theory based upon the TFD algorithm, where
kµr ; r = 1, 2 and ζµνr = ζµr ζ̄

ν
r ; r = 1, 2 read external momenta and polarization tensors,

respectively. The D = 26 zero-temperature amplitude A(k1; ζ1, ζ2) is written in the modular
invariant fashion as follows [13]:

A(k1; ζ1, ζ2) = (πκ)2(α′)−D/2ζµν1 ζσρ2

∫
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× exp
[
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where f(w) =
∏∞
n=1(1− wn); w = q2 = exp[2πiτ ], ηκτ is the space-time metric, ϑ1 reads the

Jacobi theta-function, F denotes the fundamental domain of the modular group SL(2, Z) in
the complex τ -plane and the integration over the complex ν-plane is restricted to cover a single
parallelogrammatic region P [14]. It is almost needless to mention that the slope and intercept
of the closed-string reggeon are α′/2 and 2α = (D−2)/12, respectively, and κ reads the string
coupling constant. Since the soft domain k1 ' 0 is necessary and sufficient at any finite
temperature for the dynamical mass shift of the massless thermal tensor boson, the present
discussion is confined to the asymptotic behaviour of the D = 26 temperature-dependent
amplitude Ā(k1; ζ1, ζ2;β) at the low-energy limit k10 ' 0. We are then eventually led to the
“proper-time” integral representation of Ā(k1; ζ1, ζ2;β) as follows:

Ā(k1; ζ1, ζ2;β) = 4π
( κ

4π
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(α′)−D/2
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l exp
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+ F (τ2; 0, 0,−|w| exp[i(φ1 + φ2)],−|w| exp[−i(φ1 + φ2)])} (2)

at k10 ' 0, where zr = xr exp[iφr]; r = 1, 2, |w| = exp[−2πτ2] and θ is the step function.
We do not go into details of the real function F but merely refer to ref. [6] and ref. [9]. As a
consequence, the zero-energy thermal amplitude ImĀ(k1 ' 0; ζ1, ζ2;β) vanishes identically at
D = 26 as well as at α = 1 for any finite temperature because |w| > 0 as expected from gauge
invariance.

All we have to do is now reduced to carrying out the regularization of the D = 26 thermal
amplitude A(k1; ζ1, ζ2;β) at k10 ' 0. The D = 26 one-loop mass shift A(k1 ' 0; ζ1, ζ2;β) of the
dilaton, graviton and antisymmetric tensor boson is then described at any finite temperature
in the standard fashion [13] which is manifestly free of ultraviolet divergences at τ2 ∼ 0 and
|ν| ∼ ∞ for any value of β and D due to modular invariance and double periodicity. The
standard integral representation thus obtained is still annoyed with infrared divergences near
the endpoints τ2 ∼ ∞ and |ν| ∼ 0, however, unless D < 2. The regularization of the ν
integration has already been brought to realization in the modular invariant fashion [15], [16].
Moreover, the infrared divergence of the one-loop TFD self-energy amplitude at τ2 ∼ ∞ can
be remedied at any finite temperature through the dimensional regularization in the sense of
analytic continuation which is, of course, modular invariant as well as double periodic. The
dimensionally regularized, D = 26 one-loop dual symmetric mass shift Â(k1 ' 0; ζ1, ζ2;β) of
the dilaton, graviton and antisymmetric tensor boson in then reduced to

Â(k1 ' 0; ζ1, ζ2;β) = 4π(πκ)2(4π2)(D−1)/2ζµν1 ζσρ2 {D̃µνσρ + G̃µνσρ + T̃µνσρ} ×
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×
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dτ1 exp[2πimnτ1]
( β2

4π2α′
m2 +

4π2α′

β2
n2 − D − 2

6

)(D−1)/2

×

× Γ
[
− D − 1

2
, π
√

1− τ2
1

( β2

4π2α′
m2 +

4π2α′

β2
n2 − D − 2

6

)]
, D = 26 , (3)

where D̃µνσρ = (α′/8π)2ηµνησρ, G̃µνσρ = 0, T̃µνσρ = (α′/8π)2(ηµρηνσ−ηµσηνρ). It is a matter
of course that D̃µνσρ, G̃µνσρ and T̃µνσρ describe the factors of the dilaton, graviton and anti-
symmetric tensor boson contribution, respectively, to the one-loop thermal amplitude Â(k1 '
0; ζ1, ζ2;β). The thermal duality symmetry βÂ(k1 ' 0; ζ1, ζ2;β) = β̃Â(k1 ' 0; ζ1, ζ2; β̃) then
follows for any value of β, where β̃ = 4π2α′/β. In accordance, the dimensionally regularized,
thermal amplitude Â(k1 ' 0; ζ1, ζ2;β) yields the non-vanishing one-loop dual symmetric mass
shift for the dilaton and antisymmetric tensor boson which is literally proportional at any
finite temperature to the dimensionally regularized, D = 26 one-loop dual symmetric thermal
cosmological constant Λ̂(β) [6]. The dimensionally regularized, one-loop dual symmetric mass
shift of the graviton, on the other hand, is of course guaranteed to vanish identically at any
finite temperature. It will be possible to argue that these observations based upon the TFD
paradigm are in full consonance with the thermal stability of renormalizability, factorizability,
duality and gauge invariance, which is in turn substantiated at the soft limit k1 ' 0 as
an immediate consequence of the thermal stability of both modular invariance and double
periodicity.

Let us examine the singularity structure of the dimensionally regularized, D = 26 dual
symmetric thermal amplitude Â(k1 ' 0; ζ1, ζ2;β). The position of the singularity β|m|,|n|
is determined by solving β/β̃ · m2 + β̃/β · n2 − 4 = 0 of every allowed (m,n) in eq. (3).
We then obtain infinitely many branch point singularities of the square-root type as follows:
β|m|,0 = βH/|m|; β̃|m|,0 = β̃H · |m|; β1,1 = βH · (

√
3 + 1)/2

√
2; β̃1,1 = βH · (

√
3 − 1)/2

√
2,

where m is nonzero integral and βH (β̃H) reads the inverse (dual) Hagedorn temperature. In
particular, β1,0 and β̃1,0 form the leading branch points at βH = 4π

√
α′ and β̃H = π

√
α′,

respectively. It is of crucial importance to note that β−1 = β−1
H (β̃−1

H ) represents the lowest-
temperature singularity for the physical β (β̃) channel in proper reference to the infrared
behaviour of the dual symmetric thermal amplitude Â(k1 ' 0; ζ1, ζ2;β). Moreover, there
appears the self-dual leading branch point at β2,0 = β̃2,0 = β0 = 2π

√
α′ as an inevitable

consequence of the thermal duality symmetry. In addition, β1,1 and β̃1,1 yield the non-leading
branch points at (

√
3 + 1)π

√
2α′ and (

√
3 − 1)π

√
2α′, respectively. Finally, all the residual

secondary branch points at β|m|,0 (β̃|m|,0) with m = ±3; ±4; . . . are, of course, removed onto
the unphysical sheet of the physical β̃ (β) channel across the leading branch cut mentioned
above. If the thermal duality symmetry had been manifestly violated for the TFD self-energy
amplitude Â(k1 ' 0; ζ1, ζ2;β), on the contrary, we would then have obtained infinitely many
finite-temperature branch point singularities at βl = βH/l, l = 1, 2, 3, . . . of the square-root
type above the Hagedorn temperature β−1

H and there would eventually have appeared the
essential singularity at the finite temperature β = 0 in natural consonance with the breaking
of the thermal duality. It is to be remembered that the existence of an inverse critical
temperature β0 in addition to the inverse (dual) Hagedorn temperature βH (β̃H) for the TFD
self-energy amplitude Â(k1 ' 0; ζ1, ζ2;β) is simply and naturally inherent in the singularity
structure of the dimensionally regularized, one-loop free energy amplitude Λ̂(β) in the D = 26
closed-bosonic-thermal-string theory based upon the TFD calculus [6], [9]. Consequently, the
present aspects of the TFD thermal-string amplitude will afford active confirmation to the
interesting argument à la ref. [11] and ref. [17] on the global phase structure of the heterotic
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thermal-string ensemble.
Let us now turn our attention to the statistical ensemble of the D = 26 closed bosonic

thermal string. The thermodynamical properties of the bosonic-thermal-string excitation can
be analyzed in the same fashion as ref. [11], ref. [17] and ref. [18] through the microcanonical
ensemble paradigm outside the analyticity domain of the canonical ensemble. Substantial
use is made of the thermal duality relation not only for the canonical region but also for the
microcanonical region. There will then exist three phases as follows [11], [17]: I) the β channel
canonical phase in the range 4π

√
α′ = βH 5 β <∞, II) the dual β̃ channel canonical phase in

the range 0 < β 5 β̃H = βH/4 and III) the microcanonical phase in the range β̃H < β < βH.
Moreover, there will occur an effective splitting in half of the microcanonical region as in the
following [17]: III-i) the β channel microcanonical domain βH/2 = β0 5 β < βH and III-ii) the
dual β̃ channel microcanonical domain β̃H < β 5 β̃0 = β0. As a consequence, it will be possible
to claim that the so-called maximum temperature of the D = 26 closed-bosonic-thermal-string
theory is asymptotically described in the sense of the thermal duality relation as the self-dual
temperature β−1

0 = β̃−1
0 = 2 · β−1

H = 1/2π
√
α′. It is parenthetically mentioned that the

present observation might lead up to a novel hypothesis of the “extended” β (dual β̃) channel
microcanonical phase for the range β0 5 β < β1,1 (β̃1,1 < β 5 β̃0 = β0). Another newfangled
hypothesis of the β (dual β̃) channel microcanonical phase confined to the region β1,1 5 β < βH

(β̃H < β 5 β̃1,1) might not be abandoned yet, however, in which the maximum temperature of
the bosonic-thermal-string excitation will be effectually reduced at least at the one-loop level
to β−1

1,1 in replacement of β−1
0 . The future exploration of the thermodynamical properties of

string excitations will be inevitable for the manifest materialization of the physical significance
of β1,1 as well as β̃1,1, anyhow.

Let us next touch upon the physical significance of the τ1 integral in the asymptotic
estimation of the infrared behaviour of the TFD thermal amplitude Â(k1 ' 0; ζ1, ζ2;β).
Any solution β|m|,|n| as well as β̃|m|,|n| with mn 6= 0 might temporarily be spurious in the
sense that the τ1 integration vanishes, unless either m = 0 or n = 0, due to the factor
exp[2πimnτ1] in eq. (3) under the tentative replacement of

√
1− τ2

1 by 1, or equivalently some
appropriate positive constant, in the incomplete gamma-function Γ . Such a hypothetical,
contaminative prescription for the leading-order evaluation in the infrared domain of the
moduli space has thoroughly been left out of consideration in the present context, of course,
because of the manifest breaking of modular invariance. Accordingly, it will be of pratical
interest to emphasize that the present argument on the global phase structure of the bosonic-
thermal-string ensemble is in full accordance with the fundamental properties such as modular
invariance and double periodicity within the general framework of the TFD algorithm of
closed-thermal-string theories of the critical dimension.

The present TFD paradigm might deserve more than ephemeral consideration in the thermo-
dynamical investigation of the thermal-string excitation in general.
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