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Abstract. — The hypernetted-chain theory 1s applied to study the fractional quantum Hall
effect with the Laughhn wave functions A new method 1s proposed to include the effect of the
elementary diagrams, which improves upon the commonly used modified hypernetted-chain ap-
proximation The correlation energy, the pair distribution function, as well as the magnetoroton
excitation spectrum have been computed within this method The results obtamed are in very
good agreement with the available Monte Carlo estimates The method 1s generahizable to treat
other wave functions, hike those corresponding to the hierarchical states or those of composite
fermion type

The fractional quantum Hall effect (FQHE) [1] 1s one of the most remarkable many-
body phenomena discovered in recent years [2]-[4] It occurs in a two-dimensional electronic
system 1n the extreme quantum limit of strong perpendicular magnetic field (B > 5T), low
temperature (T < 2K) and high mobility of electrons (u > 10% cm?/Vs) The magnetic field
15 so strong that mixing of Landau levels by disorder or by electron-electron interaction 1s
a very weak perturbation Due to the absence of an energy scale, like the bandwidth of a
periodic solid or the Fermi energy of an electron hquud in the absence of a magnetic field, the
Coulomb 1nteraction induces such strong correlations amongst the electrons that cannot be
accounted for 1n a perturbative way. It has been shown that these correlations are very well
approximated by Jastrow factors, similarly to the case of hqud He and 3He

Integral equation techmques, such as hypernetted chain (HNC) for bosons or Fermi hyper-
netted chain (FHNC) for fermions, allow for reahstic evaluations of the distribution functions
and related quantities for Jastrow correlated wave functions In fact, they are particularly
useful when calculations must be performed strictly in the thermodynamic lunit. They have
been extensively and successfully used in the study of quantum liquids. HNC theory has also
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been adopted in the study of the FQHE, to evaluate the pair distribution function for the
variational wave function proposed by Langhlin [5]

N N
¥m = [[(zs = )™ T expl-I2*/4i3), (1)
1=1

1<k

where m 15 an odd number. Here 2, 1s the complex coordmate 2, = x, +1y, and lp = \/h/eB
is the magnetic length This wave function describes a translationally invanant incompressible
liquid at a density p = 1/(2mml3), corresponding to a lowest Landau-level filling factor
v=1/m

It is well known that the (F)HNC techniques are intrinsically approximated because there
1s a set of cluster terms (corresponding to the so-called elementary diagrarns) which cannot
be fully mcluded 1n any closed form. Whereas the approximation of totally neglecting these
terms ((F)HNC/0) leads to reliable results for the ground-state energies, realistic evaluations of
other quantities, like for instance the pair distribution function or the magnetoroton spectrum,
require better approximations Therefore, it 1s important to find numerical procedures to
include efficiently the main contributions from the elementary diagrams

In this paper we propose a new scaling procedure for the inclusion of elementary diagrams
m (FYHNC calculations to be used in the study of the FQHE, and we apply 1t to the casc of
the Laughlin wave function of eq (1)

The modulus square of the wave function can be viewed as a product of a Jastrow factor
times a single-particle term, namely

N N
e[ = 3 utr)| [16%0), @)
1<y=1 =1
where
u(r) = —2mln(r), (3)
and

exp [-r2/212
ing

¢*(r) = po(r) = (4)

Using the HNC theory, one can express the pair function g(r) as a series of cluster terms,
associated with linked diagrams The difference with respect to the case of the standard
Jastrow wave function, in which the smgle-particle term 1s not present, is that the diagrams
are not irreducible and each vertex brings the uncorrelated one-body density po(r) as a vertex
correction It has been proved [6] that such a series can be recast mto a series of irreducible
diagrams with the full one-body density p(r) being the vertex correction Since the full density
15 a constant, then the HNC equations for the pair function are exactly the same as for a Jastrow
wave function without the single-particle term and at density p = 1/(2rmi3).

The pair distribution function 1s expressed n terms of the functions N(r,;) and E(r,,),
which give the sum of the chamn and elementary diagrams, respectively, namely

g(ri;) = exp[—u(ry,) + N(r,;) + E(ry;)] (5)

where the function N(r) satisfies the following convolution equation.

N(ry) = p / dre X(ru) (X(ri,) + N(r,) (6)
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Fig 1 - Lowest-order elementary function Es(r) for states v = § (solid) and v = } (dashed) compared
to the exact E(r) for the state v = 1 (dotted)

Fig 2 ~ Comparison of the pair distribution function g(r) obtained with HNC/0 (dashed), HNC/s

(sohd) and the best MC data fitting, after Girvin et al ref [10] (dotted), for the Laughhn states v =

— 1
andv =g

and

X(ry;) = g(ry) = 1= N(r,,) (7)

1s the function which sums up all the composite diagrams. The function E(r) s not given in
a closed form, hike N(r), and 1s 1n general approxumated The HNC/0 approximation neglects
E(r) completely The HNC/4 approximation includes the elementary diagrams of the sumplest
structure, namely the four-point elementary diagram E;(r) Higher-order approximations
include the five-pomnt elementary structures (HNC/5), and so on It 1s known that the series
HNC/0, HNC/4, . , converges very slowly to the exact result. It 1s also known that the
various elementary structures E4(r), Es(r), ..., roughly scale with each other Based on this
property, the scaling approximation

E(r) = aFEy(r) (8)

has been successfully used [7] in variational calculations on liquid ‘He

In this paper we apply this approximation to calculate the pair function, the energy per
particle and the magnetoroton spectrum for the Laughlin wave function given in eq. (1). For
a gwven filling factor 1/m we solve the HNC equations in HNC/0 approximation Then we

TABLE I — Energies per particle in unats of e’ Jelo

m HNC/0 HNC/4 HNC/s MHNC MC

3 —0 4055 —0 4063 -0 4100 —0 4156 -0 410
5 —03240 ~03247 ~03274 -0 3340 -0 3277
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Fig 3 - The SMA collective excitation gap D(k) 1n umts of e?/elo obtained using the HNC/0 and

HNC/s pair distribution function g(r) for the Laughhn state v = %

compute the four-point elementary diagram

E4(Tl]) = %/[h(‘l‘,k)h(’r;[)h(TJk)h(TJ[)h(TM:I]dQTk(121‘1, (9)

where h(r) = g(r) — 1. From the correspondence [5] of [#|? with the partition function of a
charge neutral two-dimensional plasma, 1t follows that [8] HNC/0 theory automatically satifies
the charge neutrality and the perfect screening sum rules, but violates the compressibilaty sum
rule. Therefore, we fix the scaling parameter a by imposing the compressibilaty sum rule [8]

p/er r(g(r) - 1) = —16l3(1 — m/2) (10)

With the estimated E(r) we solve agam the HNC equation for a new g(r) and we 1terate
the process until convergence 1s reached

In all the cases the pair function satisfies almost exactly the charge neutrality and the perfect
screemang sum rules as n the first treatment

This approximation improves significantly upon that used by Laughlin [5] 1n his onginal
calculations, named Modified HNC (MHNC) [8] MHNC approximation assumes that, for
any given filling factor, E(r) scales with respect to the corresponding function E(m=V(r)
for filing one, which 1s exactly known. In fact the assumption that the shape of E(r) does
not change significantly with the fillimg factor 15 not fully justified, as shown in fig 1 The
results obtained for the encrgy per particle for m = 3,5 are given n table I Our scaling
approximation (HNC/s) 1s compared with HNC/0, HNC/4 and with the MHNC results of ref
[5] and the Monte Carlo (MC) results of ref [9] One can see that the HNC/s results are in
much better agreement with the MC ones than the other approximation schemes.

The values found for the scaling coefficient «, 6 25 for fillmg 1/3 and 5 2 for fillng 1/5 are
quite large, consistently with the fact that HNC/4 is a rather poor approximation MHNC
approximation gets worse for higher valnes of m

In fig. 2 we plot the pair distribution functions obtamed for » = 1/3 and v = 1/5 by
using HNC/0 and HNC/s techniques together with that given in ref. [10] which fits the Monte
Carlo data. The agreement between the HNC/s pair function and the MC one 1s impressive
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especially in the small-r regime The 72, 7* and ¢ coefficients of g(r) at small r compare very
well with the MC results of ref. [10]

We also investigated the collective excitations n the single-mode approximation (SMA),
using the wave function [10], [11]

&™) =gy U, (11)
where p), 1s the projection of the density operator py = ZJ exp[tk - rj] onto the subspace of
the lowest Landau level In fig 3 we plot the excitation energies D(k) obtammed with both
HNC/s and HNC/0 at filling v = 1/3 One can see that the effect of the elementary diagrams
15 quite sizeable for such a quantity, and HNC/0 approximation gives a higher gap Simlar
results are found also at filling v =1/5

We have presented a new scheme to solve the HNC equations for the Laughlin wave function
in the FQHE. This 15 based on the assumption that the sum of all the elementary diagrams
scales with respect to the simplest four-pont elementary diagram Ey This scheme provides
better results than the largely used MHNC approximation for the energy per particle, the pair
distribution function and magnetoroton spectrum Our method can be easily generalized to
multicomponent HNC or to FHNC and, therefore, can be applied to calculations with other
variational wave functions, like for mnstance the hierarchical wave functions [12], [13] or the
composite fermion wave function [14] Work n this direction 15 1n progress.
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