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PACS. 73.40Hm– Quantum Hall effect (including fractional).
PACS. 05.30−d – Quantum statistical mechanics.
PACS. 73.50Jt – Galvanomagnetic and other magnetotransport effects (including thermomag-

netic effects).

Abstract. – We point out that the extended Chalker-Coddington model in the “classical”
limit, i.e. the limit of large disorder, shows crossover to the so-called “smart kinetic walks”. The
reason why this limit has previously been identified with ordinary percolation is, presumably,
that the localization length exponents ν coincide for the two problems. Other exponents, like the
fractal dimension D, differ. This gives an opportunity to test the consistency of the semiclassical
picture of the localization-delocalization transitions in the integer quantum Hall effect. We
calculate numerically, using the extended Chalker-Coddington model, two exponents τ and D
that characterize critical properties of the geometry of the wave function at these transitions. We
find that the exponents, within our precision, are equal to those of two-dimensional percolation,
as predicted by the semiclassical picture.

Fifteen years after its discorvery [1], the quantum Hall effect [2] continues to generate a
large body of theoretical work. A sizable subset of this work concerns the scaling properties of
the localization-delocalization transitions that occur between subsequent plateaus in the Hall
conductance [3], [4]. These scaling properties are usually characterized by a small number
of critical exponents. Emphasis has been put on the exponent ν, which is the exponent
governing the divergence of the localization length ξ. It is believed to be universal. Koch et
al. [5] measured it experimentally to be ν = 2.3 ± 0.1, while Wei et al. [6] found the value
ν = 2.4 ± 0.2. This latter value was not measured directly, however, but relies on assumed
values of other exponents. More recently, Dolgopolov et al. [7] have found ν ≈ 1. This value
is based on gradient percolation arguments equivalent to those of Sapoval et al. [8], which
in fact are incompatible with the original percolation picture of the integer quantum Hall
effect [9], [10]. Attempts at deriving ν from field theory have so far been unsuccessful, but
controversial semiclassical scaling arguments exist which suggest that ν = νp + 1 = 7/3, where
νp = 4/3 is the classical percolation correlation length exponent [11], [12]. Several numerical
simulations have been performed to determine ν. Models based directly on continuum de-
scriptions of the problem, using long-wavelength Gaussian potentials or short-range impurity
potentials, result in ν ≈ 2.3–2.4 [13]-[18]. Network models, originally introduced by Chalker
and Coddington [19], give a similar value for ν [20], [21].

We address here the controversial question whether the agreement between the value of ν
found from the semiclassical picture, and that determined both numerically and experimentally

c© Les Editions de Physique



            

20 EUROPHYSICS LETTERS

(with exceptions), is fortuitous. We do this by recalling that the semiclassical picture, by a
very direct argument [12], provides predictions for other exponents, beyond ν. We test these
predictions numerically by simulations on the extended Chalker-Coddington model.

The semiclassical picture is based on viewing the localization-delocalization transition in the
Hall system as a percolation transition [9], [10]. It assumes the disordered potential V in which
the electrons move, to be slowly varying on the scale of the magnetic length l =

√
h̄/eB, where

B is the magnetic field (1). This assumption constitutes the high-field model. Interactions
between electrons are ignored. In this approximation, the electron wave function ψ is localized
to equipotential curves, forming “ribbons” of width l. Changing the magnetic field B results
in the localized wave function moving up or down in this landscape. Typically, the ribbons
constituting the wave function are restricted to encircle mountains or valleys in the energy
landscape. However, scattering between closed ribbons is possible when they overlap at saddle
points. There is a typical distance a between saddle points. In a window ∆B centered at a
magnetic field Bc, a sample-spanning cluster of ribbons overlapping at saddle points exists,
resulting in delocalization. The width of the window ∆B is determined by the magnetic length
l and decreases with increasing sample width W—or, more precisely, W/a. This description
becomes semiclassical once the question of overlap across saddle points takes tunneling into
account. Overlap is then no longer characterized as overlap within the magnetic length l, but
by a tunneling probability [23], [24]

P =
e−1/χ

1 + e−1/χ
=

1
1 + e1/χ

; χ =
ml2|VxxVyy|1/2
he|B −Bc|

. (1)

Here Vxx and Vyy are the principal double spatial derivatives of the disordered potential at
the saddle point, and m is the effective electron mass. The semi-classical picture provides
arguments that, taking tunneling into account, one effectively changes the basic length scale
of the percolation problem from a to χa, leading to ν = νp + 1 = 7/3. In this letter, these
arguments are not discussed. On the contrary, the conclusion of a basic rescaling is taken for
granted, and consequences beyond the shift in ν are explored and checked.

The correlation length exponent ν is not sufficient to determine all critical properties of a
percolation transition; one more exponent is needed. In ordinary percolation, the cluster size
distribution

N(s,B) = s−τF

(
s

ξD(B)

)
, (2)

giving the density of clusters of size s, may be used to determine the complete set of exponents.
F is a scaling function that approaches a constant for small arguments and falls off faster than
any power law for large arguments. The two exponents appearing in eq. (2) are known for
ordinary percolation in two dimensions [25]: τp = 187/91 and Dp = 91/48. A natural definition
of a cluster of size s in the “classical” (i.e. ignoring tunneling) high-field model is s closed loops
in contact, in the sense of overlap, across saddle points. Thus, the cluster size distribution in
this model describes the geometry of the localized wave function ψ.

From a practical point of view, it is convenient to study the cluster size distribution N(s,B)
by measuring its moments. We define the k-th moment as

Mk(ξ) =
〈(∫

dx|ψ|2
)k〉

, (3)

(1) It has, however, been shown recently that delocalization of electrons in a strong magnetic field
moving among randomly placed hard scatterers constitutes a percolation problem [22].
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where 〈. . .〉 denotes sample averaging. The wave function is calculated by specifying its value
on the borders of the system. Thus, ψ(xs) is not an eigenstate of the time evolution operator,
but rather describes a stationary state where current flows through the system. At this stage
it is important to note the difference between the definition (3) of Mk(ξ) and the moments
Nk(ξ) = 〈

∫
dx|ψ|2k〉, used by Klesse and Metzler [26]. Their focus was the multifractality of

the wave function. In contrast, we are interested in the essentially geometric cluster structure
near the percolation threshold, and the exponents describing that structure. Our moments
Mk(ξ) provide a means to measure precisely those exponents, and can say nothing about the
multifractality of the wave function. We also note that their wave functions were eigenstates of
the time evolution operator of the system, making direct comparison with our results difficult.
Using (2), we find that Mk is related to ξ as

Mk(ξ) ∼
∫ ξDp

ds sk−τp ∼ ξDp(k+1−τp) . (4)

When tunneling is included, the purely geometric definition of the cluster size s is no longer
practical. However, if the size distribution is defined in terms of the moments, (3), the notion
of size is still viable. In [12], it was argued that tunneling does not change the two exponents
appearing in N(s,B), τ = τp and D = Dp, since they only measure relative sizes of clusters.
This is a highly nontrivial prediction of the semiclassical picture: The exponents τ and D
should remain invariant when tunneling is taken into account, whereas other exponents, like
ν, are considerably changed.

We test this prediction in this letter, by numerically determining the exponents τ and
(τ−1)D of eqs. (3) and (4) for the extended Chalker-Coddington model. We sketch this model
in the following . Imagine a square network oriented at 45◦ with respect to two boundaries
L lattice spacings apart. The lattice is periodic in the orthogonal direction. The bonds of
the network represent the paths the electrons may take in the disordered energy landscape.
Each bond can only be traversed in one direction. The possible directions are chosen so that
the network forms a grid of loops of alternating handedness. The nodes represent saddle
points, and the lattice constant corresponds to a. The wave function itself is represented by
a complex variable z. At a given saddle point, z1 and z2 are ingoing amplitudes, and z3 and
z4 outgoing amplitudes as shown in fig. 1. The amplitudes are related through the relations
z3 = z1 tanh γ + z2(1/ cosh γ) and z4 = z1(1/ cosh γ)− z2 tanh γ. In addition, random phases
are picked up along the bonds joining the nodes, representing the variation in path length from
loop to loop. The control parameter γ determines the scattering properties at the saddle point.
When γ → 0, the transmission probabilities are P1→4 = P2→3 = 1 and P1→3 = P2→4 = 0.
Likewise, when γ → ∞, we have that P1→3 = P2→4 = 1 and P1→4 = P2→3 = 0. When
γ = γc = ln(1 +

√
2), one finds P1→4 = P1→3 = P2→4 = P2→3 = 1/2. When γ < γc,

P1→3 = P2→4 = 1/(1 + sinh−2 γ) are due to tunneling, while P1→4 = P2→3 = 1 − P1→3 are
direct channels. When γ > γc, P1→4 = P2→3 = 1/(1 + sinh+2 γ) are due to tunneling while
the two remaining channels are direct. This is illustrated in fig. 1. Comparing these results
with eq. (1) derived in the high-field model, we identify [4], [23]

χ =
1

2| ln sinh γ| . (5)

While Chalker and Coddington kept γ equal for all nodes, with disorder in the phases φi only,
thus making it difficult to interpret the model in a percolation context, we follow Lee et al. [20],
and extend the model by writing γ = γce

µ−v. Here µ is a fixed parameter equal for all nodes
in the network, while v is chosen randomly on the interval [−w/2,+w/2]. In the case when
|µ− v| ¿ 1, we may relate |µ− v| ∝ |B −Bc| of the high-field model.
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Fig. 1. – Illustration of scattering at a given node in the Chalker-Coddington model: a) shows the
case when γ ≤ γc while b) shows the case γ ≥ γc. The dashed curves denote the case γ = γc.

For finite µ and v → ∞, the open channels are z1 → z4 and z2 → z3, and when v → −∞
they are z1 → z3 and z2 → z4. In this extreme case, there is no contact across the saddle
points. However, delocalization is still possible. The correlation length exponent in the
extreme case when w → ∞ has been measured by Lee et al. [20] to be 1.29 ± 0.05 in
agreement with classical percolation theory (predicting 4/3). However, it is important to
realize that the system in this limit is not equivalent to the percolation picture of Kazarinov
and Luryi and Trugman [9], [10]. Instead, this limit reproduces a system of square tiles, in
which each tile is chosen at random from two possible elements, defining which channels are
open. The resulting curves are known as Dragon curves [27]. The critical properties of this
tiling were studied by Roux et al. [28]. They found that it is in the universality class of smart
kinetic walks (SKW). Weinrib and Trugman [29] determined the universality class of SKW,
finding, e.g., νskw = νp = 4/3. The distribution of the length s of closed SKWs —loops— is
Ñ(s) ∼ s−τskw , where τskw = 15/7 = 195/91, in comparison to τp = 187/91 in the cluster size
distribution of percolation, (2). The fractal dimension of the SKW is Dskw = 7/4 = 84/48,
while in classical percolation the fractal dimension of the clusters is Dp = 91/48 [28].
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Fig. 2. – The moments Mk(L) as a function of L. The straight lines are least-square fits from which
y(k) is determined.



             

i. bratberg et al.: geometrical exponents in the integer etc. 23

1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

14

k

y(
k)

Fig. 3. – y(k) as determined from the data of fig. 2. The upper continuous line is y(k) = (91/48)k−2,
while the lower straight line is y(k) = (7/4)k − 2.

Thus, the criticality of the Chalker-Coddington model in the limit w →∞ comes from the
loop size distribution, and not from joining of overlapping loops at saddle points, as there are
no saddle point crossings.

We now turn to the case of finite w. For small enough w and µ, tunneling becomes
important, and the tunneling amplitude of a particular node depends on the value of the
stochastic variable v in the range set by w. The wave function is no longer confined to non-
intersecting loops. Rather, one has clusters of loops, connected across nodes through tunneling.
Thus, we are back to a percolation situation. It is this situation we study numerically: disorder
both in phase factors and in γ.

We fix the value of z to unity on the bonds entering the network along the left boundary, and
to zero on the bonds entering on the right. Thus, we are describing a stationary state where
current flows through the network. We then solve for the wave function inside the network
using a biconjugate gradient algorithm for inverting the linear set of equations that ensue [30].
We generated 2000 10 × 10 lattices, 1200 20 × 20 lattices, 2000 30 × 30 lattices, 600 40 × 40
lattices, 600 50×50 lattices, and 500 60×60 lattices setting w = 1. With µ = 0, the correlation
length diverges, and its role is taken over by the finite linear dimension L of the lattice. From
eq. (4), the moments should scale like Mk(L) = 〈(

∑
i |zi|2)k〉 ∼ Ly(k), where the sum is over

nodes and where y(k) = D(k+1−τ) = Dp(k+1−τp) = (91/48)k−2 ≈ 1.89k−2. In fig. 2 we
plot Mk(L) as a function of L. From the slopes of the least-square fits indicated in this figure,
we determine y(k) = Ak − B, where A = 1.86± 0.10 and B = 1.83± 0.10. In fig. 3, we show
y(k) as a function of k. We also show in this figure y(k) = (91/48)k − 2, expected from the
semiclassical arguments, and the SKW result y(k) = (7/4)k − 2. Clearly, our numerical data
fit the semiclassical result well. This confirms the semiclassical prediction: With a strictly
finite width w, i.e. with tunneling through saddle points of stochastic height, the values of
the exponents τ and D are universal and equal to τp and Dp. As a check on consistency, we
also simulated the extended Chalker-Coddington model with a large (i.e. essentially infinite)
w. The exponents beyond ν were found to be consistent with the SKW exponents, not with
the percolation exponents.
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In conclusion, we have addressed the controversial question whether or not the semiclassical
picture is capable of explaining the nature of the localization-delocalization transitions. By
numerically determining the scaling properties of moments of the spatial distribution of the
wave function in the extended Chalker-Coddington model, we find, within the error bars,
agreement with the predictions from the semiclassical picture. Furthermore, we note that the
SKW to which the extended Chalker-Coddington model crosses over at large disorder yields
results outside the error bars. Our results lend strong support to the semiclassical picture.
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