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Abstract. – We present the solutions of the Einstein-Dirac equations in a Bianchi type-I
space-time with cosmological constant Λ. According to the value of a dimensionless parameter
Φ, three classes of solutions of the Einstein-Dirac equations exist. If Φ < 1, these solutions
have two singularities t1 and t2: as t → t1, t2 the metric tensor is of Kasner type, whereas, as
t→ ±∞, it becomes isotropic and, because of Λ, has a stationary-type behaviour.

According to the Fridmann-Robertson-Walker (FRW) cosmological models, the Universe
is homogeneous and isotropic and has evolved from a singular state, always maintaining its
symmetries [1]. In such a way the FRW models do not investigate the causes of homogeneity
and isotropy. As a consequence, the question arises whether the Universe has always been like
the present one or has assumed the actual symmetries, evolving from a less symmetric initial
state. A way to solve the problem of the causes of isotropy is to represent the Universe by
means of an anisotropic and homogeneous cosmological model, which, at late times, acquires
the symmetries observed at the actual cosmological epoch, as the result of a dynamical process.
In effect, the Bianchi spaces contain in some particular cases the FRW models, and to these they
reduce themselves at late times: the FRW models with k = 0, 1,−1 are contained, respectively,
in Bianchi spaces classified as Bianchi type-I, Bianchi type-IX and Bianchi type-V [2], [3].

In particular, in this paper, we consider a homogeneous and anisotropic cosmological model
of Bianchi type-I, in which the source of the gravitational field is an unquantized Dirac field.

Moreover, following Raychaudhuri [1], we assume that the cosmological constant Λ is not
zero a priori.

The Lagrangian density of the gravitational field plus the Dirac field minimally coupled to
gravity (we use units such that h̄ = c = 1) is [4]

L = e
(R+ 2Λ

16πG
+ LDirac

)
= e
[R+ 2Λ

16πG
+

1

2
i (ψ̄γα∇αψ −

(
∇αψ̄

)
γαψ + 2imψ̄ψ)

]
, (1)

where e =
√
−g = det‖Bα i‖, R is the curvature scalar of a V4 space-time, ‖Bα i‖ is the

c© Les Editions de Physique



586 EUROPHYSICS LETTERS

orthonormal vierbein field, such that

gij = Bα iB
β
jηαβ , (2)

‖ηαβ‖ = diag(1,−1,−1,−1) is the Minkowski metric, gij is the metric tensor, ψ is the Dirac
field with mass m, ψ̄ ≡ ψ+γ0 is the Dirac adjoint of ψ, {γα} are the special-relativistic Dirac
matrices, satisfying the anticommutation rules

{γα, γβ} = 2ηαβI, (3)

∇αψ = Aα
i∂iψ −

1

8
Γασβ [γσ, γβ ]ψ, ∇αψ̄ = Aα

i∂iψ̄ +
1

8
Γασβψ̄[γσ, γβ ], (4)

are, respectively, the covariant derivatives of ψ and ψ̄ with ‖Aα i‖ ≡ ‖Bα i‖
−1,

Γαβσ = Γα[βσ] = (−ηµσAα
iAβ

j + ηµαAβ
iAσ

j − ηµβAσ
iAα

j)∂[iB
µ
j] (5)

is the connection of a V4 space-time, valued on an orthonormal tetrad [5]. Varying the action
integral I ≡

∫
Ld4x, built up by the Lagrangian density (1), with respect to ψ̄ and Bα i, and

equating such variations to zero , we get, respectively, the Dirac equation and the Einstein
equations with cosmological constant:

iγα∇α ψ −mψ = 0, (6)

Rαβ −
1

2
ηαβR− Ληαβ = 4πGi[−ψ̄γ(β∇α)ψ +∇(αψ̄γβ)ψ] , [6] (7)

where Rαβ is the Ricci tensor with respect to Γαβσ and Λ is assumed to be positive.
Now, we assume that the Universe is a Bianchi type-I space-time: its space-time separation

is

ds2 = dt2 − (a1)2(dx1)2 − (a2)2(dx2)2 − (a3)2(dx3)2 , (8)

where a1, a2, a3 depend on time t only.
Since such space-time is spatially homogeneous, it is reasonable to suppose that ψ does not

depend on spatial coordinates:

ψ = ψ(t). (9)

Consistently with (2), we choose the only non-zero elements of ‖Bαi‖ as

B0
0 = 1, Bii = ai, i = 1, 2, 3. (10)

The representation of Dirac matrices {γα} we choose is

γ0 =

[
I O
O I

]
, γb =

[
O σb

−σb O

]
, (11)

where O =

[
0 0
0 0

]
, I =

[
1 0
0 1

]
and σb are the Pauli matrices (b = 1, 2, 3).

In a Bianchi type-I space-time, according to (9) and (10), the Dirac equation becomes

γ0 [i ψ̇ +
i

2
(H1 +H2 +H3)ψ −mγ0ψ] = 0, (12)

where ψ̇ ≡ dψ
dt , Hi ≡

ȧi
ai

(Hubble functions), ȧi ≡
dai
dt , i = 1, 2, 3.
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Its solution is [7]

ψ =
1

(−g)
1
4


b1e
−im t

b2e
−im t

b3e
im t

b4e
im t

 , (13)

where
√
−g has to be valued from the Einstein equations (see eq. (22)) and bi are integration

complex constants.
Now, after deriving ψ̇i and (ψ̇i)

∗ from the Dirac equation (12) and replacing them in the
Einstein equations, we obtain that the field equations G0b − 8πGσ0b = 0, b = 1, 2, 3 are
identically satisfied and

G00 − Λη00 − 8πGσ00 = 0 : H1H2 +H1H3 +H2H3 − Λ−
2β
√
−g

= 0, (14)

Gbb − Ληbb − 8πGσbb = 0 : Ḣc + Ḣd + (Hc)
2 + (Hd)

2 +HcHd − Λ = 0, (15)

b, c, d = 1, 2, 3, c, d 6= b,

G12 −Kσ12 = 0 :
H1 −H2

4a3
(|b1|

2 − |b2|
2 + |b3|

2 − |b4|
2) = 0, (16)

G13 −Kσ13 = 0 : i
H3 −H1

4a2
(b2(b1)

∗
+ b4(b3)

∗ − b1(b2)
∗ − b3(b4)

∗
) = 0, (17)

G23 −Kσ23 = 0 :
H3 −H2

4a1
(b2(b1)

∗
+ b4(b3)

∗
+ b1(b2)

∗
+ b3(b4)

∗
) = 0, (18)

where

β = 4πGm(|b3|
2 + |b4|

2 − |b1|
2 − |b2|

2). (19)

If we require that H1 6= H2, H1 6= H3, H2 6= H3, then from eqs. (16)-(18) we get the following
constraints on the bi constants:

b1(b2)∗ + b3(b4)∗ = 0, |b1|
2 − |b2|

2
+ |b3|

2 − |b4|
2

= 0. (20)

Now, by operating suitably on eq. (15), this can be put into the form

(y Hb)
· − Λy − β = 0, b = 1, 2, 3, (21)

with y ≡
√
−g, such that

ÿ − 3Λy − 3β = 0, (22)

obtained by means of eq. (21) and taking into account that

H1 +H2 +H3 ≡
ẏ

y
. (23)

From eq. (21) it follows that

Hb =
kb + βt+ Λ

∫
y dt

y
, (24)
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where kb, b = 1, 2, 3, are three real integration constants and

y ≡
√
−g = ae

√
3Λ t + be−

√
3Λ t −

β

Λ
(25)

is the general solution of (22) where, due to eqs. (14)-(15),

a b =
β2

4Λ2
(1− Φ), Φ =

Λ(k1
2 + k2

2 + k3
2)

2β2
. (26)

Substituting (24) and (25) in the identity (23) we get that

k1 + k2 + k3 = 0. (27)

According to the value of the dimensionless parameter Φ, eq. (24) has three classes of solutions:
they correspond to Φ > 1, Φ = 1, Φ < 1, respectively.

Now, if Φ > 1, then Λ is inferiorly limited by a positive constant, so that for such solutions
it makes no sense to consider the limit Λ→ 0.

Moreover, if Φ = 1, then Λ = 0 implies the constraint β = 0.
For these reasons the only solutions for which we can take the limit Λ→ 0, without having

any unwanted constraint, are those corresponding to Φ < 1: one has that

Hb =

√
Λ
3 (1− Φ) sinh(x) + kb Λ

β
√

1− Φ cosh(x) − 1
, (28)

√
−g =

β

Λ
(
√

1− Φ cosh(x) − 1), (29)

where we have set x ≡
√

3Λ(t+ d), d being a real integration constant.
From eq. (28) we obtain

ab(t) = ab0|
√

1− Φ cosh(x) − 1|
1
3

∣∣∣∣ex − z1

ex − z2

∣∣∣∣pb , (30)

where

z1 =
1 +
√
Φ

√
1− Φ

, z2 =
1−
√
Φ

√
1− Φ

, (31)

pb =
kb

sign (β)
√

3
2 ((k1)2 + (k2)2 + (k3)2)

, (32)

p1 + p2 + p3 = 0, (33)

a10, a20, a30 are integration real constants satisfying

a10a20a30 =
β

Λ
sign (

√
1− Φ cosh(x) − 1). (34)

It is easy to verify that, as Λ → 0, the solutions (31) reduce to the ones corresponding to
Λ = 0 (in the absence of scalar field) as in paper [7], by assigning suitable values to kb and d.

Moreover, since
√
−g > 0 ∀t, we conclude that

a) t ∈] −∞ , t2 [∪] t1 , +∞ [ if β > 0,
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b) t ∈] t2 , t1 [ if β < 0.

The metric tensor has two singularities (one, if k1 = k2 = k3 = 0):

t1 = −d+
1
√

3Λ
ln

(
1 +
√
Φ

√
1− Φ

)
, t2 = −d+

1
√

3Λ
ln

(
1−
√
Φ

√
1− Φ

)
. (35)

They are physical singularities because the curvature scalar

R = −2(Ḣ1 + Ḣ2 + Ḣ3 + (H1)2 + (H2)2 + (H3)2 +H1H2 +H1H3 +H2H3) (36)

diverges at t = t1, t2.

The singularity t = t1 is a zero of a1, a2 and a3, if one has that, respectively, p1 > −
1
3 , p2 >

− 1
3 , p1 + p2 <

1
3 (let us remember that p3 = −p1 − p2).

On the other hand, t = t1 is an infinity of a1, a2 and a3, if one has that, respectively,
p1 < −

1
3 , p2 < −

1
3 , p1 + p2 >

1
3 : we notice that these conditions cannot be verified together, so

at t = t1 the three scale factor ai cannot diverge together.

Furthermore, the singularity t = t2 is a zero of a1, a2 and a3, if one has that, respectively,
p1 <

1
3 , p2 <

1
3 , p1 + p2 > −

1
3 .

On the contrary, t = t2 is an infinity of a1, a2 and a3, if one has that, respectively,
p1 >

1
3 , p2 >

1
3 , p1 + p2 < −

1
3 : we notice again that, since these conditions cannot be verified

together, at t = t2, ai cannot diverge together.

Moreover, at t = t1, a1, a2 and a3 take over a finite non-zero value respectively if p1 =
− 1

3 , p2 = − 1
3 , p1 + p2 = 1

3 : we see that no more than two scale factors can have together a
finite non-zero value at t = t1, i.e. at least one of them will be singular at t = t1.

Similarly, at t = t2, a1, a2 and a3 take over a finite non-zero value respectively if p1 =
1
3 , p2 = 1

3 , p1 + p2 = − 1
3 : once again we have that no more than two scale factors can have

together a finite non-zero value at t = t2, i.e. at least one of them is singular at t = t2.

We see that if |p1 + p2| <
1
3 , with |p1| <

1
3 , |p2| <

1
3 , in the interval ] t2 , t1 [ the Universe

expands from t = t2 up to the instant t = −d, at which the scale factors ai reach a maximum,
and then collapses up to t = t1.

In such a case, the Universe expands from t = t1 up to infinity in the interval ] t1, +∞ [ and
contracts from t = −∞ up to t = t2 in the interval ] −∞ , t2 [.

From eq. (24) we see that, at t = t1 and t = t2, H2
i , HiHj and Ḣi diverge as 1

(
√
−g)2 , indeed,

in the field equations (14), (15) the cosmological constant Λ and the mass-energy term 2β√
−g

become negligible in a neighbourhood of the singularities and we have an empty universe whose
metric is of the Kasner type: as t→ t1, developing ex − z1, it turns out that

ai ≈ |t− t1|
qi , (37)

where qi ≡
1
3 + pi are such that

q1 + q2 + q3 = 1, (q1)2 + (q2)2 + (q3)2 = 1; (38)

similarly, as t→ t2, developing ex − z2, it turns out that

ai ≈ |t− t2|
ri , (39)

where ri ≡
1
3 − pi are such that

r1 + r2 + r3 = 1, (r1)2 + (r2)2 + (r3)2 = 1. (40)
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This strong initial anisotropy is increasingly damped as |t| � |t1|, |t2| by the mass-energy of the
Dirac field and by Λ: finally, at infinity, the metric has an isotropic stationary-type behaviour

and we have an empty universe with constant Hubble functions: Hi =
√

Λ
3 .

Finally, if k1 = k2 = k3 = 0, one has Φ = 0 and we get the solution of Isham-Nelson with
cosmological constant in a spatially flat FRW universe [4], which, in turn, becomes the solution
of Davis-Ray [8] as Λ→ 0.
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