
                          

Excitability following an avalanche-collapse
process
To cite this article: F. Plaza et al 1997 EPL 38 85

 

View the article online for updates and enhancements.

You may also like
Brain–computer interface-based action
observation combined with peripheral
electrical stimulation enhances
corticospinal excitability in healthy subjects
and stroke patients
Min Gyu Kim, Hyunmi Lim, Hye Sun Lee et
al.

-

Transcranial ultrasound stimulation
modulates the interhemispheric balance of
excitability in human motor cortex
Liyuan Ren, Zhaolin Zhai, Qiong Xiang et
al.

-

Frequency-dependent antidromic
activation in thalamocortical relay neurons:
effects of synaptic inputs
Guosheng Yi and Warren M Grill

-

This content was downloaded from IP address 18.119.125.7 on 25/04/2024 at 22:50

https://doi.org/10.1209/epl/i1997-00205-7
https://iopscience.iop.org/article/10.1088/1741-2552/ac76e0
https://iopscience.iop.org/article/10.1088/1741-2552/ac76e0
https://iopscience.iop.org/article/10.1088/1741-2552/ac76e0
https://iopscience.iop.org/article/10.1088/1741-2552/ac76e0
https://iopscience.iop.org/article/10.1088/1741-2552/ac76e0
https://iopscience.iop.org/article/10.1088/1741-2552/acb50d
https://iopscience.iop.org/article/10.1088/1741-2552/acb50d
https://iopscience.iop.org/article/10.1088/1741-2552/acb50d
https://iopscience.iop.org/article/10.1088/1741-2552/aacbff
https://iopscience.iop.org/article/10.1088/1741-2552/aacbff
https://iopscience.iop.org/article/10.1088/1741-2552/aacbff


EUROPHYSICS LETTERS 10 April 1997

Europhys. Lett., 38 (2), pp. 85-90 (1997)

Excitability following an avalanche-collapse process

F. Plaza
1
, M. G. Velarde

1
, F. T. Arecchi

2
, S. Boccaletti

2
, M. Ciofini

2

and R. Meucci
2

1Instituto Pluridisciplinar, Universidad Complutense de Madrid
Paseo Juan XXIII, 1, 28040 Madrid, Spain
2Istituto Nazionale di Ottica, Largo E. Fermi, 6, 50125 Firenze, Italy

(received 13 November 1996; accepted in final form 4 March 1997)

PACS. 02.30Hq – Ordinary differential equations.
PACS. 42.65Sf – Dynamics of nonlinear optical systems; optical instabilities, optical chaos, and

optical spatio-temporal dynamics.
PACS. 42.60Gd – Q-switching.

Abstract. – Excitability and relaxation oscillations are shown to appear in the vicinity of
subcritical or transcritical bifurcations with a different scenario from those previously introduced
in biology, chemistry and liquid-crystal physics. Experimental observation of such a scenario
has been done in a laser with intracavity saturable absorber.

Since the work by Hodgkin and Huxley on neurons [1], excitability has become a paradigm
in biology as well as in non-linear chemistry and physics. A mathematical basis for excitability
was provided by FitzHugh and Nagumo [2], [3]. The aim of this letter is to point out that
excitability exists in a general class of systems where it has not been sought for and to show
experimentally that a laser with a saturable absorber can behave as an excitable system. For
such a system, a dynamical description has been provided [4]-[10], but so far no one had
considered it in terms of excitability.

A dynamical system is excitable when a stationary solution is stable with regard to per-
turbations smaller than a characteristic threshold. If perturbed above this threshold, the
system performs a large cycle, coming back to its resting initial state. In practical cases,
it is necessary to apply an external perturbation to observe the dynamical cycle. Here we
study such a dynamics close to a bifurcation from stationary to oscillatory behavior. There
exist three generic bifurcations of this type in the plane [11], [12]: i) a Hopf bifurcation from
an unstable focus, ii) a saddle-node bifurcation taking place on a closed path (saddle-node
homoclinic bifurcation), and iii) a homoclinic bifurcation or saddle-loop bifurcation. Excitabil-
ity is associated with each one of these bifurcations, which qualitatively correspond to three
types of behavior, namely: i) FitzHugh-Nagumo dynamics (FHN) [2], [3] which exhibits a Hopf
bifurcation with the so-called “canard” phenomenon [13]; ii) Coullet’s dynamics [14], [15], that
uses a Ginzburg-Landau approach leading to an excitable regime in the vicinity of a saddle-node
homoclinic bifurcation in oscillating systems close to a strong resonance; iii) the dynamics of
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Fig. 1. – Schematic representation of typical phase space in an avalanche-collapse process, for R0 < 0
and decreasing ε. a) Bistable regime; b) ε < U+: past a Hopf bifurcation of I+; c) at the ε value where
the saddle loop homoclinic bifurcation occurs; d) excitable regime obtained beyond the homoclinic
bifurcation. Dashed lines correspond to nullclines of eqs. (1).

systems with a homoclinic bifurcation having the excitable regime just after the disappearance
of oscillations.

The three types of excitability appear after different bifurcations so they are topologically
different [12]. Here we focus attention on type iii) (excitability following a homoclinic bifurca-
tion), as it has not been studied previously. Suppose a system undergoes an inverse bifurcation:
it can be either a transcritical or a subcritical pitchfork or a subcritical Hopf bifurcation. It is
generally assumed that the energy supply which supports the bifurcation is powerful enough to
maintain at a given value the control parameter of the bifurcation. In more realistic situations,
the control parameter may vary according to the availability of the energy supply by a fixed
flux.

The simplest case of such situation is the transcritical bifurcation. For this bifurcation, all
the calculations are very simple to carry out and the dynamics is topologically the same as for
subcritical pitchfork or Hopf bifurcations. We thus consider{

∂tU = RU + U2 ,
∂tR = ε(R0 −R− kU2) .

(1)

where U is the order parameter, R the control parameter, R0 the value of R that would be fixed
in the case of a very fast R dynamics independent of U , and ε the ratio of the characteristic time
of U to the characteristic time of R. The first equation is the normal form of the bifurcation, the
second equation describes the dynamics of R. When U vanishes, R is stable around R0; as U
increases, R decreases quadratically (k > 0). Below the threshold R0 = 0, I0 (U = 0, R = R0)
is a stable solution. Then for 1 + 4kR0 > 0, other stationary solutions exist created by an
inverse saddle-node bifurcation: I± defined by U± = −R± = (1 ±

√
1 + 4kR0)/2k. These
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Fig. 2. – State diagram of eqs. (1) (k = 1).

solutions do not correspond to a bifurcation of the stationary solution I0. I− is a hyperbolic
point for all ε. I+ is stable for ε > U+ (fig. 1 a)). Note that this point is located on the
unstable branch of the transcritical bifurcation diagram, but can be made stable. For ε < U+,
this point is destabilized via a Hopf bifurcation (fig. 1 b)). When ε is decreased, the limit cycle
exists until it reaches the hyperbolic point I−. Then the homoclinic bifurcation occurs, and
the oscillations around I+ disappear (fig. 1 c)). The only stable point remaining in the phase
portrait is I0. Perturbations of I0 beyond the stable manifold of I− drive the system into a
large excursion in phase space which goes beyond I+ (fig. 1 d)) before coming back to I0. This
dynamics corresponds exactly to the qualitative framework we fixed.

We restrain our study to U > 0, as the dynamics is invariant in the upper half plane, since the
horizontal axis is invariant. Decreasing ε produces a destabilization of I+ at the same value, but
a homoclinic bifurcation is no longer possible. Oscillations appear with stronger and stronger
relaxation features as ε→ 0. If R0 < 0, the key parameter that produces the transition between
oscillations and excitability is the characteristic time ε of the control parameter. Decreasing ε
from unity changes the system dynamics through the following scenarios: non-zero stationary
stable output, localized oscillations around a non-zero value and excitability. The state diagram
of this system is summarized in fig. 2.

In the excitable (R0 < 0) or oscillatory (R0 > 0) regime, the structure of the pulse is the
same. For ε small, the signal U grows exponentially, while R does not change in an appreciable
manner. When U becomes of order unity, the control parameter suddenly decreases at a faster
rate than U , since U acts quadratically on R. Then, R quickly stops the avalanche of U , and
brings U back to zero. After this collapse, R slowly reaches its stable value R0.

This qualitative picture is not changed when one considers a subcritical Hopf or a subcritical
pitchfork bifurcation. An interesting example of this latter case is the laser with intracavity
saturable absorber (LSA). In a recent paper [16], it has been shown that starting from a minimal
Maxwell-Bloch description [4]-[7], a state diagram similar to that reported in fig. 2 is obtained
for LSA, topologically equivalent to model (1). For LSA, U represents the field amplitude and
R the net gain (laser gain minus cavity losses minus saturable absorber losses). In R, the
absorber losses saturate at increasing intensity U2. Thus, the equations become{

∂tU = RU − βU3 ,
∂tR = ε(R0 −R− kU2) .

(2)
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Fig. 3. – Experimental setup. LSA: CO2 laser with an SF6 saturable absorber; SL: stabilized CO2 laser;
M: mirrors; SM: scanning mirror; BS: 50 % beam splitter; PM: power meter; A: variable attenuator;
D1,D2,D3: fast HgCdTe detectors; λ/2: half-wave plate; λ/4: quarter-wave plate; C: rotating chopper
wheel.

with R0 < 0. Equations (2) imply a modification of fig. 2: the dashed line separating non-zero
stationary output from oscillation bends down at large R0, as easily checked by writing the new
Jacobian around I+ and imposing the Hopf condition. As a result, the new state diagram can be
obtained by decreasing R0 at a fixed small ε, which yields sequentially: non-zero steady output,
oscillations with non-zero average, excitability of the zero state. For type-ii) excitability, one
would instead observe oscillations around zero followed by excitability [15].

For a sufficient pump power, the LSA offers various dynamical regimes like bistability and
relaxation oscillations (passive Q-switching) [4]-[10]. If we now reduce the amount of pump,
but inject an external signal, the LSA can be triggered to an avalanche-collapse excitability
process, illustrated by an output independent of the input, down to a threshold injection below
which no output appears.

Evidence of type-iii) excitability emerges from the experiment of fig. 3, where LSA denotes
the CO2 laser with an SF6 saturable absorber, and SL a stabilized CO2 laser. The time
evolution of the LSA signal is monitored by means of the fast detector D2; the mean output
power emitted from the coupling mirror can be measured using a power meter (PM). The
SL is a single-mode CO2 laser, tuned on the same frequency of the LSA by inserting the
half-wave plate (λ/2) and looking for beating on the detector D1. During this operation, the
variable attenuator A is removed. Decreasing the gain of the LSA via its pumping current i,
the following behavior is observed: stationary non-zero output (i ≥ 10 mA), weak oscillations
around the non-zero output (i = 9 mA), growth of the oscillations → passive Q-switching
(type I-PQS [8], i = 8 mA) at a frequency around 1 kHz (fig. 4 a)), stationary zero output
(i ≤ 4.5 mA). Note that in the region 4.5 mA ≤ i ≤ 8 mA, reducing the gain decreases the
pulse repetition frequency while the pulse shape remains unchanged.

The excitability of the zero output state appears when we inject a weak signal from SL into
LSA after reflection on a scanning mirror (SM). The injected light provides a perturbation to
the zero state of LSA, that yields a big response if a threshold value is overcome. The SM
(rotating at 4 kHz) and the chopper C provide an injection consisting of a sequence of pulses
at a frequency of about 50 Hz. A quarter-wave plate (λ/4) provides the injected light with
the appropriate horizontal polarization (the λ/2 plate has been removed). The configuration
of fig. 3 prevents both lasers from auto-injection phenomena, hence the SM does not induce
oscillations of LSA when the SL output is closed. The response of the LSA (solid line) to an
injected signal (dashed line) is shown in fig. 4 b); the pulse shape is the same as that of fig. 4 a).
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Fig. 4. – a) Passive Q-switching pulses of LSA for i = 8 mA, without injection. b) Single pulse
response of LSA (solid line) for a small injected signal (dashed line) for i = 4.5 mA. The vertical scale
for the injected signal is in mW. Inset: sequence of pulses due to injection. The after pulse plateaux
at roughly 0.75 W lasts for a time of about 0.2 ms before the zero state is recovered. The repetition
frequency (about 50 Hz, see text) is imposed by SM and C.

Three important features of the experiment identify excitability, linking the observations
to the predictions of the theoretical model. First, the sequence of behaviors observed without
injection for decreasingR0 (that is the excitation current) is incompatible with type-ii) behavior.
Second, at the excitation current i = 4.5 mA, an external injection recovers a giant output
pulse, past a defined threshold. To estimate such a threshold, we remove C, measure with
PM the average power before attenuator A and record the corresponding input to LSA with
detector D3. Evaluating the ratio between the peak and average signals and taking into account
the attenuation, we estimate a threshold of 0.25± 0.02 mW peak power. Third, mean height
and shape of the pulses do not depend on the injected signal, provided the latter overcomes
threshold. Clearly, these facts differ from the behavior of a light amplifier where the output
has a shape depending on the input and displays no threshold.

We ought to emphasize that the quantitative results of the experiment, hence the specific
form and related details of the pulse of fig. 4 b) are not fully described by the two variable model
here introduced. Indeed, on the one hand the avalanche-collapse model does not account for the
detuning and for the rotational manifold of CO2 molecules. On the other hand the actual form
of the pulses depends on the nature of the absorber as well as on the particular conditions of
operation. The after-pulse (from 0.05 ms on in fig. 4 b)) is not a steady state but rather a long
transient before the complete vanishing of the output (as can be appreciated from the inset)
and is related to the slow decay of rotational levels [9], [17]-[20]. Yet, the reported experimental
results are in qualitative agreement with the predictions of the above model.

In conclusion, the experiment here reported accommodates beautifully with the scenario of
the avalanche-collapse model. In view of the generality of the mechanisms here considered, this
new type of excitability may be of relevance in other realms of science. Recently, we learned
of similar phenomena in a semiconductor laser with optical feedback [21].
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