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Abstract. – Gravitomagnetism is a fundamental, weak-field, prediction of Einstein’s theory
of general relativity, is generated by currents of mass and owes its name to its formal analogies
with magnetism, generated by currents of electric charge. Then, according to general relativity,
Earth’s spin should influence the motion of its orbiting satellites. Indeed, we analysed the laser
ranging observations of the orbits of the satellites LAGEOS and LAGEOS II and obtained the
first direct measurement of the gravitomagnetic orbital perturbation due to the Earth’s spin,
known as the Lense-Thirring effect.

For centuries the origin of inertia has been discussed and debated by scientists and philoso-
phers. Mach’s ideas on the origin of inertia inspired Einstein to develop the theory of general
relativity [1], [2]; Mach thought that the inertial forces arise from some interaction with
the distant masses in the universe. A posteriori, general relativity did not unambiguously
incorporate these ideas. However, the theory of general relativity satisfies [2] at least a kind of
“weak manifestation” of Mach’s ideas: the “dragging of inertial frames” by a spinning mass,
also known as Lense-Thirring effect. In general relativity the concept of inertial frame has only
a local meaning and a local inertial frame is “rotationally dragged” by mass-energy currents, in
other words moving masses influence and change the orientation of the axes of a local inertial
frame (gyroscopes). Thus, an external current of mass, such as the spinning Earth, “drags”
and changes the orientation of gyroscopes. A test gyroscope precesses with respect to “an
asymptotic inertial frame” with angular velocity: Ω̇ = − 1/2H = [−J + 3 (J · x̂ ) x̂]/|x|3,
where J is the angular momentum of the central object and H its gravitomagnetic field (see
fig. 1). This is the “rotational dragging of inertial frames”, or “frame-dragging” (“dragging”,
as Einstein named it).

Since 1896 several experiments have been discussed and proposed to measure the rotational
dragging of inertial frames by a spinning body [1]-[4]. The NASA Gravity Probe-B experi-
ment [3] is aimed to measure with great accuracy this phenomenon on the orientation of the
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Fig. 1. – The gravitomagnetic field, H, generated by the angular momentum, J, of a central rotating
body. In general relativity, for a localized, stationary, mass-energy distribution, in the weak-field and
slow-motion limit, the three “vector” components of the metric tensor are given by: h ∼= −2(J×x)/r3,
where J is the angular momentum of the central body and h is known as the gravitomagnetic potential.
The gravitomagnetic field H is given by H = ∇ × h. To characterize the gravitomagnetic field
generated by the angular momentum of a body and the Lense-Thirring effect, and distinguish it
from other relativistic phenomena such as the de Sitter effect —due to the motion of a gyroscope
in a static gravitational field— one may give a description of the gravitomagnetic field in terms of
spacetime-curvature invariants. The pseudoinvariant ∗R ·R, built from the Riemann tensor R and
its dual ∗R, gives an invariant characterization of gravitomagnetism since it is non-zero in the field of
a central body if and only if the body is rotating. Indeed the pseudoinvariant ∗R ·R is proportional
to the angular momentum of the central body. Thus, one may describe gravitomagnetism as that
phenomenon of nature such that spacetime curvature is generated by the spin of a body [2].

axis of spin of a small orbiting gyroscope. However, the whole orbital plane of a satellite is
itself a kind of enormous gyroscope dragged by the gravitomagnetic field. Indeed, in addition
to the rotational dragging and precession of a test gyroscope due to the angular momentum J
of a central object, the orbit of a test particle around a central body with angular momentum
J has a secular rate of change of the longitude of the line of the nodes (intersection between
the orbital plane of the test particle and the equatorial plane of the central object), discovered

by Lense-Thirring (1918): Ω̇
Lense-Thirring

= 2J/[a3 (1− e2)3/2]; where a is the semimajor axis
of the test particle, and e its orbital eccentricity. The proposed LAGEOS III experiment [4]
should measure with great accuracy the gravitomagnetic dragging of the nodal lines of the
orbits of two non-polar, passive, laser-ranged satellites with supplementary inclinations.

However, the orbit of a test particle also has a secular rate of change of the mean longi-
tude of the orbit and of the longitude of the pericenter ˙̃ω (defining the Runge-Lenz vector):
˙̃ω

Lense-Thirring
= 2J ( Ĵ− 3 cos I l̂ )/[a3(1−e2)3/2]; where l̂ is the orbital angular momentum,

unit vector, of the test particle, and I its orbital inclination (angle between the orbital plane
and the equatorial plane of the central object).

Our direct measurement of the Lense-Thirring effect was obtained by laser ranging obser-
vations of the satellites LAGEOS and LAGEOS II [5]. The gravitomagnetic field has changed
the point of closest approach to Earth —perigee— of the satellite LAGEOS II by about 11
meters during our period of observation of about 3.1 years.

Laser ranging to the Moon and to artificial satellites is an impressive technique to measure
distances from a laser tracking station on Earth to retro-reflectors placed on the Moon, or
on satellites orbiting Earth. By the use of short laser pulses ranges can be measured with
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accuracies of less than 1 cm from emitting lasers on Earth to retro-reflectors on a satellite,
and with accuracies of about 2 cm to retro-reflectors on the Moon. The NASA-ASI (Italian
Space Agency) satellite LAGEOS II is a high-altitude, small cross-sectional area-to-mass ratio,
spherical, laser-ranged satellite. It is made of heavy brass and aluminum, is completely passive
and covered with laser retro-reflectors. It acts as a reference target for ground-based laser
tracking systems to measure —via laser ranging— crustal movements, plate motion, polar
motion and Earth rotation. LAGEOS II is essentially identical to the NASA satellite LAGEOS
(LAser GEOdynamics Satellite) but they have different orbital parameters. The semimajor
axis of LAGEOS is a ∼= 12 270 km, the period P ∼= 3.758 hr, the eccentricity e ∼= 0.004, and the
inclination I ∼= 109.9◦. The semimajor axis of LAGEOS II is aII

∼= 12 163 km, the eccentricity
eII
∼= 0.014, and the inclination III ∼= 52.65◦.

Cornerstones of our analysis were: the NASA launch in 1976 of the LAGEOS satellite; the
development by the NASA/Goddard Space Flight Center of the powerful program GEODYN,
and of its new version GEODYN II, for satellite orbit determination, geodetic parameter
estimation, tracking instrument calibration, satellite orbit prediction and other applications
in geodesy; the determination of highly accurate Earth’s gravity field solutions, including
GEML1, GEML2, GEMT1, GEMT2, GEMT3, GEMT3S.

The other new basic elements that made our direct measurement of the Lense-Thirring effect
possible were: 1) the launch in October 1992 by NASA and ASI of the laser-ranged satellite
LAGEOS II; 2) the new Earth’s gravity field solutions JGM-2 and JGM-3, jointly developed
by NASA-Goddard and by the CSR (Center for Space Research) of the University of Texas
at Austin [6]; 3) the continuous laser ranging to the satellites LAGEOS and LAGEOS II from
several stations around the world, the ranging data from the best stations have a precision of
a few millimeters; and 4) the use of a new method [7] to measure the gravitomagnetic field.

We analysed the orbits of the satellites LAGEOS and LAGEOS II using existing laser
ranging observations, a highly accurate modeling of their orbital perturbations including the
gravity field solution JGM-3, and the 1994 version of GEODYN II. All the general relativistic
perturbations due to the masses of Earth and Sun, including the de Sitter or geodetic effect
(today measured with accuracy of the order of 10−2), were incorporated in the GEODYN
equations of motion and then computer-integrated; we did not, however, include in our model
the orbital perturbations due to the Earth’s angular momentum, that is the Lense-Thirring,
gravitomagnetic, effect to be determined. In order to measure the frame-dragging effect from
our residuals we introduced a new parameter µ, which, by definition, is one in general relativity,
µGR ≡ 1, and zero in Newtonian theory [2].

The residuals of the orbital elements of a satellite give a measure of any perturbation that is
not modeled accurately enough or that is not included in the model. The orbital elements we
analysed are: the node of LAGEOS I, the node of LAGEOS II, and the perigee of LAGEOS II.
The nodes of LAGEOS and LAGEOS II are both dragged by the Earth’s angular momentum;
according to the Lense-Thirring formula one has: Ω̇Lense-Thirring

I
∼= 31 milliarcsec/year and

Ω̇Lense-Thirring
II

∼= 31.5 milliarcsec/year. The argument of pericenter (perigee in our analysis),
ω, of a test particle, that is the angle on its orbital plane measuring the departure of the
pericenter from the equatorial plane of the central body, also has a Lense-Thirring drag; for
LAGEOS I one has: ω̇Lense-Thirring

I
∼= 32 milliarcsec/year, and for LAGEOS II: ω̇Lense-Thirring

II
∼= −57 milliarcsec/year . The nodal precessions of LAGEOS and LAGEOS II can be deter-
mined with an accuracy of the order of 1 milliarcsec/year, or less. In fact, we obtained a
root mean square of the node residuals of about 2 milliarcsec for LAGEOS and of about 3
milliarcsec for LAGEOS II, over a total period of observation of about 3.1 years. Regarding
the perigee, the observable quantity is eaω̇, where e is the orbital eccentricity of the satellite.
Thus, for LAGEOS the perigee precession ω̇ is an extremely difficult quantity to measure; its
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orbital eccentricity is in fact about 4×10−3. The orbit of LAGEOS II is more eccentric, its
orbital eccentricity is about 0.014, and the Lense-Thirring drag of the perigee of LAGEOS II
is almost twice as large, in magnitude, as that of LAGEOS. In fact, we obtained a root mean
square of the residuals of the LAGEOS II perigee of about 35 milliarcsec over about 3.1 years,
whereas the total effect of frame-dragging on the perigee, over about 3.1 years, is ∼= −176
milliarcsec.

The most critical source of error in our measurement arises from uncertainties in the Earth’s
even zonal harmonics and in their temporal variations. Using only the satellites orbiting today,
one cannot eliminate the unmodeled orbital perturbations due to all the even zonal harmonics;
in particular, unmodeled orbital effects due to the harmonics of lower order are of a size
comparable to or larger than the Lense-Thirring effect. However, by analysing the JGM-3
solution with its uncertainties in the even zonal harmonic coefficients and by calculating the
secular effects of these uncertainties on the orbital elements of LAGEOS and LAGEOS II,
we found that the main sources of error in the determination the frame-dragging effect are
concentrated in the first 2 or 3 even zonal harmonics, that is J2, J4 and J6. To further test [8]
the order of magnitude of the real errors in the estimated value of the J2n coefficients, we took
the difference [7] between two different gravity field solutions: JGM-3 and GEMT-3S [9]. We
then found that by far the largest uncertainties, on the nodes of LAGEOS and LAGEOS II and
on the perigee of LAGEOS II, arise from ∆J2 and ∆J4, a smaller error is due to ∆J6, and much
smaller errors arise from the differences in the other J2n coefficients. However, we have the
three observable quantities: the node of LAGEOS, the node of LAGEOS II, and the perigee
of LAGEOS II, and we want to determine the parameter µ, measuring the frame-dragging
effect. Then, we can use these three observable quantities Ω̇I, Ω̇II and ω̇II to determine µ,
thereby eliminating the two largest sources of error arising from the uncertainties in J2 and
J4. This new method leads to a value of µ unaffected by the errors due to δJ2 and δJ4, by
far the largest, but sensitive only to the smaller errors due to δJ2n with 2n ≥ 6. As regards
tidal, secular and seasonal changes in the geopotential coefficients, we stress that the main
effects on the nodes and perigee of LAGEOS and LAGEOS II due to tidal and other temporal
variations in the Earth’s gravity field are due to changes in the first two even zonal harmonic
coefficients, J2 and J4. Any tidal error in J2 and J4, and any error due to other unmodeled
temporal variations in J2 and J4, including their secular and seasonal variations, is eliminated
using our combination of residuals of nodes and perigee. In particular, most of the errors due
to the 18.6 year and 9.3 year tides, associated with the Moon node, are eliminated in our
measurement. Thus, using three observable quantities, the two nodes and the perigee, one can
solve for µ and eliminate δJ2 and δJ4:

δ Ω̇Exp
LageosI + k1δΩ̇

Exp
LageosII + k2δω̇

Exp
LageosII

∼=

∼= µ(31 + 31.5k1 − 57k2)milliarcsec/year + (contributions from δJ6, δJ8, . . .), (1)

where k1 = 0.295 and k2 = −0.35 are obtained (in order to eliminate the δJ2 and δJ4 errors)
from the system of the three equations for the nodal rates of LAGEOS and LAGEOS II and
for the perigee rate of LAGEOS II. The best fit lines of the residuals of the nodes of LAGEOS
and LAGEOS II had a slope of respectively ∼= −11 milliarcsec and ∼= 40 milliarcsec, and the
best fit line of the residuals of the perigee of LAGEOS II had a slope of∼= − 188 milliarcsec. In
fig. 2 we plotted the sum of the residuals of the nodes of LAGEOS and LAGEOS II and perigee
of LAGEOS II according to our formula to eliminate the δJ2 and δJ4 errors and after having
removed a few small periodical residual signals (corresponding to the main tidal effects, to the
odd zonal harmonics perturbation of the perigee and to the largest solar radiation pressure
perturbation) and the small observed inclination residuals. In other words each point of fig. 2
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Fig. 2. – Sum of the residuals of the nodes of LAGEOS and LAGEOS II and perigee of
LAGEOS II from November 1992 to December 1995, using the method described in the text. On
the vertical axis we plotted (node residuals of LAGEOS) + 0.295 (node residuals of LAGEOS II)−
−0.35 (perigee residuals of LAGEOS II). In our analysis we included polar motion from VLBI (IERS),
Earth’s solid and ocean tides and Earth’s gravity field, GM and spherical harmonics up to order 50,
from the JGM-3 gravity field model, solar, lunar and planetary perturbations and non-gravitational
perturbations including solar radiation pressure, Earth’s radiation pressure, anisotropic thermal radia-
tion effects, and atmospheric drag. For each 15-day arc we estimated all station coordinates except the
latitude of Goddard Space Flight Center and the latitude/longitude of Hawaii (maintained fixed), the
spacecrafts’ initial conditions (initial positions and velocities), the satellites’ reflectivities and 15-day
along-track accelerations. The best fit line shown through these combined residuals has a slope of
about 66 milliarcsec/year (the total integrated effect corresponds to about 12 meters at the LAGEOS
altitude), that is µ ∼= 1.1 (whereas µ ≡ 1 in general relativity), and the corresponding root mean
square of the residuals is about 13 milliarcsec. Due to systematic (secular and periodical) errors and
random errors, we estimated the total error in our measurement of µ to be less than 30 % of µ.

was obtained by one residual of the node of LAGEOS, plus the corresponding residual of the
node of LAGEOS II times the factor 0.295, plus the corresponding residual of the perigee of
LAGEOS II times the factor −0.35. By fitting a straight line through these combined residuals
of nodes and perigee (obtained using the JGM-3 gravity field model) we finally found

µ ∼= 1.1 . (2)

This combined, measured, gravitomagnetic perturbation of the satellites’ orbits corresponds
to about 12 meters at the LAGEOS altitude, that is about 205 milliarcsec. The root mean
square of the post-fit combined residuals is about 13 milliarcsec.

The main error sources affecting the nodes of LAGEOS and LAGEOS II and the perigee of
LAGEOS II are: errors due to uncertainties in the even zonal harmonics, C2n0, with 2n ≥ 6,
errors in the modeling of the perigee rate of LAGEOS II due to uncertainties in the odd zonal
harmonics, errors due to unmodeled tidal perturbations and to variations in the gravity field,
random and stochastic observational errors, errors due to non-gravitational perturbations. By
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a preliminary error analysis we found: even zonal harmonics, δµeven zonals:J2n≥J6 . 17 %µ; odd
zonal harmonics, δ µodd zonals. 3 %µ; tides plus other variations of the Earth’s gravity field,
δ µtides +. 6 %µ; non-gravitational perturbations, δ µnon-gravitational. 13 %µ.

Therefore, by taking into account the effects of all the systematic and random error sources,
we finally found

δµ/µ
<
∼ 30% . (3)

In conclusion, we obtained the result

µ = 1.1± 0.30 (4)

(whereas µ = 1 in general relativity).

***

This work was significantly aided by several programs and facilities of NASA in particular,
through data provided to us by the CDDIS of the NASA Goddard Space Flight Center and
the supply to us of the program GEODYN II.
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