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PACS. 05.20−y – Statistical mechanics.
PACS. 64.70Pf – Glass transitions.
PACS. 61.20Ja – Computer simulation of liquid structure.

Abstract. – We investigate the aging behavior of lattice-gas models with constrained dynamics
in which particle exchange with a reservoir is allowed. Such models provide a particularly
simple interpretation of aging phenomena as a slow approach to criticality. They appear as
the simplest three-dimensional models exhibiting a glassy behavior similar to that of mean-field
(low temperature mode-coupling) models.

As the temperature of a supercooled liquid is reduced, its dynamics becomes slower and
slower and its viscosity increases. The glassy transition is usually located at the temperature Tg

where the viscosity first exceeds the conventional value of 1013 Poise [1]. At lower temperatures,
the glass is usually assumed to be “solid” in the sense that its molecules rattle within a “cage”
formed by their neighbors and do not move away from it, at least within experimental time
scales. However, the glassy state is not an equilibrium one since the evolution of the system
does not stop altoghether, but rather keeps evolving at a slower and slower pace as the time
tw elapsed since its quench increases. This is the origin of the striking aging effects observed
in glasses [2], [3]. Aging corresponds to the property that, if one takes the thermodynamical
limit before the infinite-time limit, one finds that the Boltzmann-Gibbs distribution is never
reached. More precisely, one-time quantities like the average energy, volume, etc., reach
a well-defined infinite time limit, whereas two-time correlations and responses at very long
times do not depend only on the difference between their arguments [4], [5]. Therefore, there
is a region in the two-time plane where time-translation invariance is broken, even at very
long times. Similar properties have been observed in spin-glasses [6]. These aging properties
have been thoroughly investigated within spin-glass models [7] which are closely related to
the mode-coupling theories of structural glasses [1]. Conventional mode-coupling theories,
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which are based on the hypothesis that the initial distribution is the equilibrium one and that
time-translation invariance holds, are therefore inconsistent in this limit below Tg.

The spin-glass models proposed as a description of structural glasses lack, however, a trans-
parent physical interpretation in terms of particles and involve a complex, random Hamiltonian
which is hard to justify as a description of a fluid. Their justification is rather a posteriori
in the sense that the phenomena they exhibit recall the behavior of structural glasses. On
the other hand, a class of very simple kinetic models have been introduced to describe the
slowing-down of the dynamics [8], [9]. These models are defined by kinetic rules involving
a selection of the possible configuration changes (“moves”) and are, therefore, called models
with constrained dynamics. The kinetic rules satisfy detailed balance and are compatible with
a Boltzmann-Gibbs equilibrium distribution involving a Hamiltonian, usually chosen to be
a trivial one. The constraints are alone responsible for the slowing down of the dynamics
because, near any allowed configuration, there are only few configurations which satisfy them.

Some out of equilibrium properties in models of this kind have been already discussed
in [10]. We shall in this paper refer to the kinetic lattice-gas model studied by Kob and
Andersen (KA) [11]. The system consists of N particles in a cubic lattice of side L, (V = L3)
with periodic boundary conditions. There can be at most one particle per site. At each
time step a particle and one of its neighbouring sites are chosen at random. The particle is
moved if the three following conditions are all met: i) the neighbouring site is empty; ii) the
particle has less than four nearest neighbours; iii) the particle will have less than four nearest
neighbours after it is moved. The rule is symmetric in time, detailed balance is satisfied and
the allowed configurations have equal probability in equilibrium. In this model the dynamics
becomes slower and slower as the particle density ρ increases. Above a critical value of the
density, ρc, particle diffusion stops completely. These investigations are carried on initializing
the system in an “equilibrium” configuration, identified by the value of the density. However,
the equilibrium dynamics can be different from the dynamics at very long times for an infinite
system. Indeed, since the evolution of the system becomes so slow when the density approaches
the critical one, it is hard to see how one can force an infinite system, initially at low density,
to assume density values higher than ρc.

We show in this paper, by numerical simulation, that it is possible to study aging in these
models, if they are provided with a mechanism allowing one to realize a process analog to
a quench. We consider the three-dimensional KA model, but we allow the lattice gas to
exchange particles on a single two-dimensional layer with a reservoir characterized by the
chemical potential µ [12]. For each value of µ it is trivial to evaluate the equilibrium value of
the density ρeq(µ). If ρeq(µ) < ρc, the system rapidly reaches the equilibrium state. There is,
therefore, a critical value, µc, of µ, defined by ρeq(µc) = ρc. A quenching process corresponds
to performing a jump of µ from below to above µc. Therefore, µ plays a role analogous to the
inverse temperature in mode-coupling theories. We then observe that ρ never exceeds ρc, but
rather approaches it like a power law in time, and that the mean squared displacement of the
particles and the self-correlation function of the particle violate time-translation invariance,
since they explicitly depend on the waiting time, tw, after the quench.

One can also perform “annealing” (compression) experiments, where µ is increased at a
fixed rate. In close resemblance with the behavior of real glasses, we observe that the limit
density depends on the compression rate, and tends to ρc as the rate decreases to zero. We
can then evaluate, by integration, the entropy variation of the reservoir. The curves remain
consistently above the equilibrium curve S = Seq(µ), and seem to reach a critical value, Sc, as
the compression rate decreases to zero. This is reminiscent of the Kauzmann paradox, which
is usually considered as an argument for the existence of a thermodynamical phase transition
related to the glass one. However, in this case, we know that there is no such transition.
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Fig. 1. – a) Compression experiment. The smooth curve is the equilibrium-state equation, while the
dashed line is the KA critical value of specific volume. b) “Entropy” as obtained by integration of
compression experiment data. The smooth curve is the equilibrium entropy. The dashed line is the
KA critical value of entropy. The compression rates are (from top to bottom) 3 · 104, 105, 106 sweeps
per unit of inverse µ. System of size 203, averages over five samples.

Hysteresis effects also appear when the reservoir’s chemical potential is varied cyclically.

As mentioned in the introduction, KA studied the diffusion and the decay of the correlation
functions evolving at fixed number of particles starting from a random (equilibrium) config-
uration. They found that correlations decayed to zero with a characteristic time τ(ρ) that
appears to diverge at ρc ∼ 0.881, where also the diffusivity constant goes to zero. For densities
above ρc, the correlations did not decay at all.

We modify the KA model by creating and destroying particles on a single slice, say (x, y, z) =
(1, y, z) (the “surface”) with the following Montecarlo rule: We choose a site on that slice
at random. If it is empty we add a particle, if it is occupied we remove the particle with
probability e−µ. We alternate such sweeps of creation/destruction with the ordinary diffusion
sweeps. Since the creation/destruction mechanism is very fast, the surface itself is always in
equilibrium.

It is easy to calculate the thermodynamical equilibrium quantities (we set the temperature
kBT = 1 throughout): 1/ρ = 1 + e−µ, where ρ is the density. The entropy per unit volume is
given by S = −ρ lnρ− (1− ρ) ln(1− ρ).

We first consider compression experiments in which 1/µ (a quantity analogous to tem-
perature) is slowly lowered from a high value to zero. In fig. 1a) we report the results of
the specific volume v = 1/ρ vs. 1/µ for several annealing speeds. The smooth curve is the
equilibrium state equation and the horizontal dashed line is the critical specific volume of KA
vc = 1/ρc = 1/0.881. In fig. 1b), we show the change in entropy of the reservoir, given by
S(µ) = S(µi)−

∫ µ
µi
µdρ. The initial value µi is set to 1/1.5. The smooth curve is the equilibrium

curve S vs. 1/µ, and the horizontal dashed line is the entropy at the critical density. These
curves look quite similar to the energy vs. temperature and entropy vs. temperature curves
in the annealing of glasses. As predicted, the system falls off equilibrium around µc. We have
checked that the bulk of the sample does not exhibit density inhomogeneities except very close
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Fig. 2 Fig. 3

Fig. 2. – Relaxation of the excess specific volume ∆v = v(t) − v∞ after a quench to the subcritical
value 1/µ = 1/2.2 starting from a configuration with density 0.5. The straight line corresponds to
∆v ∝ t−0.57.

Fig. 3. – Mean-squared displacement R2(t+ tw, tw) vs. scaled time t/teff
w for tw = 10, 103, 104, 105, and

t0 = 103 (teff
w = tw + t0). Quench at the subcritical value 1/µ = 1/2.2 starting from a configuration

with density 0.75. System of size 203, average over five samples.

to the “surface”.

We now turn to the behaviour of the system after a quench to the subcritical value
1/µ < 1/µc. Here we concentrate on the behaviour of a large system at long but finite times.
In fig. 2 we plot the specific volume minus its asymptotic value vs. time after a quench to the
subcritical value 1/µ = 1/2.2, starting from a configuration with density 0.5. The data can be
fitted by a power law of the form v(t) − v∞ ∼ t−α, where α = 0.57± 0.02. The asymptotic
value of the density ρ∞ = 1/v∞ = 0.861 is slightly lower than the KA value ρc = 0.881,
suggesting that the critical density might have a weak dependence on the way the particles
entered the bulk (although it might also be a finite-size effect).

The mean square displacement R2(t+ tw, tw) of a particle between time tw and time t+ tw
must be defined with some care, since the particles may leave or enter the system. We define
it by averaging only over the particles which are present at both times. We find that diffusion
indeed slows down as the waiting time increases. However, the time t(R2) needed to reach a
given square distance is roughly proportional to tw only for long times. In fact, we find here
a phenomenon already encountered by Kob and Barrat [13] in Lennard-Jones systems: one
has to consider an effective waiting time that takes into account the relaxation time of the
system before the quench. Hence, one should define an effective waiting time teff

w = tw + τ0,
where τ0 is the relaxation time characteristic of the equilibrium situation [13]. Figure 3 shows
that, if one plots R2(t + tw, tw) vs. t/teff

w , the curves lie roughly on top of each other. The
deviations are probably due to finite-size effects, e.g. to particles that escape from the sample.
Indeed, since the contribution of these particles to R2(t + tw, tw) has not been included, the
mean-squared displacement has a tendency to be underestimated at long times. The plot
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exhibits the waiting-time dependence of the diffusion constant and is consistent with a simple
argument suggesting that diffusion is logarithmic in the presence of aging [14].

One can also easily compute the effective potential of Franz and Parisi [15]. This potential is
a purely static quantity, and therefore is independent of the dynamical constraints. Indeed, we
have not found any signature for the dynamical transition in the effective potential. However,
the “number of neighbors” constraint is an idealization of microscopical (repulsive) energy
terms, and as such it should be seen by the effective potential. It would be interesting to
clarify this point further.

Since the size of the system considered here is finite, equilibrium must eventually be reached,
provided that any two allowed configurations can be connected by a path of allowed moves.
It is possible to convince oneself that the kinetic rules allow an initially empty lattice to be
progressively filled in, leaving only O(1/L) empty sites per unit volume, and that it is possible
to find a path connecting almost any two allowed configurations, if necessary, by letting the
particles escape one by one by the way they got in. Therefore, for any value of 1/µ, the
equilibrium density will eventually be reached, but with times which diverge fast as L → ∞.
We have verified that a system of size 53 equilibrates after a time of order 108 MC sweeps.
What this argument implies is that after a quench there is first a power law approach to
the critical density ρc, followed by a much slower (size-dependent) increase in density to the
equilibrium density.

We have thus shown that the out-of-equilibrium dynamics of kinetic lattice-gas models
reproduce the phenomenology of more sophisticated glass models if one endows them with
a surface mechanism of particle exchange with a reservoir. The qualitative behaviour of
this model is similar to that of mean-field spin-glass models, whose dynamical equations are
exactly (in the infinite-size limit) the “idealised” mode-coupling equations and their correct
low-temperature extension. The roles played by the inverse chemical potential and the inverse
density (specific volume) in the present model are analogous to the ones played by temperature
and energy respectively, in the mean-field case. When quenched below Tc, mean-field spin-glass
models never equilibrate. Their energy relaxes to a “threshold” value Ethres(T ) which is higher
than the equilibrium one [5], and can be characterized as the value below which the phase
space breaks into disconnected components. In our case, the moves allowed by the kinetic
constraints keep the phase space of the system connected only for ρ < ρc. Therefore, the
density approaches this threshold value, and the corresponding manifold of allowed states
approaches the incipient “percolation” cluster characteristic of ρc [16]. Only for finite sizes the
system is able to reach values of ρ larger than ρc, just as energy values below the threshold
can only be reached by finite systems in mean-field spin-glasses [5], [17].

In short: in both cases the system ages because it slowly evolves towards a situation in
which the available phase-space becomes completely disconnected [16]. The closer the system
to the “phase-space percolation” threshold level, the slower its dynamics becomes. In this
sense the system ages because it approaches criticality [18].

To summarize, lattice gas models with constrained dynamics, in spite of their simplicity,
capture the essential features of the aging behavior of three-dimensional glasses.

***
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