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and relation to the Ising model of spin-glass

A. Moskalenko(∗), Yu. A. Kuznetsov and K. A. Dawson

Irish Centre for Colloid Science and Biomaterials, Department of Chemistry
University College Dublin - Belfield, Dublin 4, Ireland

(received 4 April 1997; accepted in final form 4 September 1997)

PACS. 36.20Ey – Conformation (statistics and dynamics).
PACS. 64.70Pf – Glass transitions.

Abstract. – We present the results of our study of the freezing transition of an amphiphilic
random copolymer. We here confirm that a replica variational approach predicts a “scale”-
dependent freezing transition due to the connectivity of the chain. In addition we suggest that
two systems, a random copolymer and an Ising spin-glass, can be directly related to each other
on the mean-field level in the vicinity of the freezing transition. Both systems have the same
type of effective free energy. The properties of replica symmetrical (RS) and replica symmetry
broken (RSB) solutions are discussed. The latter has larger radius of gyration and effective
free energy, and is less phase separated. It might be related to a globule with more than one
hydrophobic core.

Introduction. – Different models of heteropolymers have been studied recently in connection
to the protein folding problem. It is believed that the studies of conformational statistics of
a random copolymer chain, the simplest heteropolymer, can provide insight into the basic
principles of the protein folding process [1]. It is conventional to apply spin-glass methods
to investigate the property of a random copolymer because the disorder is quenched into
the sequence. This approach has brought many interesting results and recently become very
popular [1]-[11]. However, the relation between the random heteropolymer models and more
typical Ising-type models of spin-glasses still remains unclear in many cases.

We suggest a relation between a random amphiphilic copolymer model with Gaussian
distribution of disorder [10]-[13], and an Ising model of spin-glass in which each spin is coupled
to z neighbours [14], and the coupling constants are independently distributed with a Gaussian
probability density. In fact we shall establish that, on the mean-field level, both models have
the same type of effective free energy in the vicinity of the freezing transition. The numerical
analysis of the system predicts a scale-dependent freezing, which vanishes as connectivity
becomes less relevant. By scale in this context we mean that groups of different numbers
of monomers have effectively different freezing temperatures. This reflects the influence of
connectivity on the transition.
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Here we base our description on the variational approach in terms of monomer coordinates
rather than density variables [15]. Recently the application of the variational approach to
systems with quenched disorder has been developed, and we refer the reader to a review in
ref. [7]. The Hamiltonian of the system is

H = Hhom +
a

2

∫ N

0

∫ N

0

ds ds′ (λs + λs′) δ(r(s)− r(s′)) , (1)

βHhom =
κ

2

∫ N

0

ds

(
dr(s)

ds

)2

+
∞∑
m=1

um+1

(m+ 1)!

∫ N

0

{ds0 . . .dsm}
m∏
i=1

δ(r(s0)− r(si)) .

Here κ is the connectivity constant, um are virial coefficients, a is a parameter of interaction and
{λs} are quenched random variables. We assume that the chemical composition is fixed, but
monomers of A and B types can appear in random sequences. Therefore we are dealing with
quenched disorder and the average over random variables {λs} can be handled by introducing
replicas [16]. The partition function of the replicated system is

Zn({λs}) =

∫
D{ra(s)} exp[−βHn] , (2)

where Z and Hn are, respectively, the partition function of the system and the effective
Hamiltonian in the replica space, and the bar stands for the average over disorder. We assume
here that the Hamiltonian is regularized at short distances by introduction of an appropriate
cut-off. For simplicity we assume that all {λs} have a Gaussian density distribution with mean
value λ0 = 0 and variance ∆2. Therefore, the effective Hamiltonian has the form

βHn = βHn
hom −

∆̃2

2!

∫ N

0

ds ds1ds2

∑
ab

δ(ra(s, s1))δ(rb(s, s2)) , (3)

ra(s, s1) ≡ ra(s)− ra(s1) , (4)

where we have introduced ∆̃ ≡ β∆a.
We exploit the Gibbs-Bogoliubov estimate for the free energy, Fn, in the replica space [5]

and choose the Gaussian trial Hamiltonian in terms of monomer Fourier coordinates [7], [11]:

Fn = F0 + 〈(Hn −H0)〉0 , (5)

βH0 =
1

2

∑
a,b

∑
q

V
(q)
ab ra−qr

b
q . (6)

We have also used the following definition of Fourier transform for a closed polymer chain:

rq =
1

N

∫ N

0

ds exp

[
−i2πsq

N

]
r(s) , r(s) = r0 +

∞∑
q=1

exp

[
i2πsq

N

]
rq . (7)

Here one has to introduce a mass term µδab to the effective potential V
(q)
ab in (6) for regulariza-

tion [5]. The limit µ→ 0 is assumed to be taken at the final stage of calculation. Performing
an average over the Gaussian ensemble (6), one arrives at the following result:

βFn = −
3

2

∑
q

Tr logF̂q +
6κπ2

N

∑
a

∑
q

q2Faaq +
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+
∞∑
m=1

um+1 − 3δm,2∆̃
2

(m+ 1)!(2π)3m/2

∑
a

∫
{ds0 . . .dsm}(X

a...a
1...m)

−3/2 − (8)

−
∆̃2

2(2π)3

∫
ds1 ds2 ds3

∑
a6=b

(Daa
s1s2

Dbb
s2s3
− (Dab

s1s2s3
)2)−3/2 .

We note that the results presented below are qualitatively unaffected by contribution from u4

and higher terms. Here we have introduced matrices of spatial Dab
s1s2 = 1

3 〈(r
a(s1)− rb(s2))2〉0

and Fourier Fabq = 1
3 〈r

a
−qr

b
q〉0 monomer correlations

X1...n = detn×nDl:k , Dl:k = Daa
sls0sk

, 2Dab
s1s2s3

= Dab
s1s2

+Dab
s2s3
−Dab

s1s3
.

At this stage the limit n → 0 in (8) can be evaluated exactly using the Parisi parameter-
ization, Fabq → {F̃q,Fq(u)}, and the resulting effective free energy has to be minimized with

respect to F̃q, correlations within the same replica, and maximized with respect to Fq(u),
correlations between different replicas. This allows one to study numerically the collapse,
phase separation and freezing transition. An interesting discussion on a possibility of numerical
solution of the saddle point equations for directed polymers with various forms of correlations
of the random potential can be found in ref. [6]. To pursue this direction, one has to discretize
all functions, substitute the integrations by the summations over non-coinciding indices,∫ N

0

d{s1s2...sm} ↔
N−1∑

{i1,i2...im}=0

,
6κπ2

N

∑
q

q2F̃q → 6κN
N−1∑
q=1

F̃q sin2 πq

N
, (9)

and use K-step approximations for Fq(u). This has been carried out for K = 0, 1 and we

briefly summarize the results here. We shall use the notations u
(θ)
2 and u

(f)
2 , respectively, as

the values of the second virial coefficient for the collapse and the onset of freezing. i) Collapse
occurs, as normal, when u2 is negative. However, it is also possible for small positive u2, but
large values of the variance of the second-virial coefficient ∆. The latter can be viewed as an
effective three-body effect since, for m = 2, the bare u3 term (8) is replaced by an effective
three-body term, with coefficient u3 − 3∆̃2. ii) Two types of globule are possible, liquid-like

and glassy. However, the chain always collapses into liquid-like globule first, as u
(θ)
2 > u

(f)
2 for

arbitrary ∆̃ > 0 and fixed positive u3. iii) |u
(f)
2 /u

(θ)
2 | � 1 in the limit of small disorder, ∆̃ ∼ 0

and u
(θ)
2 ≈ u

(f)
2 in the limit of large disorder. iv) Beyond the glass transition the correlations

between different replicas appear at different “scales”. Thus, there are no correlations for large
q between replicas in the vicinity of the freezing transition, but these grow as ∆̃ increases. For
a ring polymer this situation also pertains, providing the limit q < N/2, as Fq = FN−q. The
profiles of the replica correlation functions for the replicas from the same group in the one-step

RSB scheme are presented in fig. 1 to illustrate this point, R(1)
q = F (1)

q /F̃q. Both R(0)
q ,

correlations between replicas from different groups, and R(rs)
q , correlations for RS solution,

exhibit behaviour similar to that of R(1)
q in fig. 1: R(1)

q > R(rs)
q > R(0)

q .
Let us emphasize once more that this phenomenon is clearly exhibited in fig. 1 where we

have carried out numerical calculations. One may view the results as defining a transition
temperature (or ∆̃f (q)) appropriate for the characteristic group of beads Nchar ∼ N/q or the

effective number of degrees of freedoms. By this we mean the following. ∆̃ is proportional to
the inverse temperature. Since ∆̃f depends on q, we observe the presence of a q-dependence on
the freezing temperature. Indeed, note that q is a conjugate to the chain index, and therefore
is inversely proportional to the number of beads under consideration. One way of viewing this
result is that, effectively, groups of beads of different numbers freeze at different temperatures.
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Fig. 1. – Plot of the correlation functions R(1)
q (replicas from the same group) vs. the chain index q

for polymer with the degree of polymerization N = 50. Here u2 l
−3 = −50, u3 l

−6 = 60, u4 l
−9 = 48.

Lines (a)-(c) correspond, respectively, to the values of the dispersion of disorder ∆̃ = 2 (near the
freezing transition line), 3 and 4. For convenience we have drawn the plots only for half of the space
of the periodic ring polymer, and the correlation functions may be extended to the other half by the

symmetry property: R(0,1)
q = R(0,1)

N−q .

Whilst groups of beads may be related to characteristic lengths in the real space, we are not yet
ready to take this step. Thus, a relation between our work and that of ref. [13] may exist, but
we are not yet clear about that relation. One connection we can make in a phenomenological
manner. The successive freezing of different modes or reduction in the effective number of
degrees of freedom is possibly related to the narrowing or “bottleneck” in the free-energy
landscape, discussed by some authors [1].

The replica approach may have an advantage because it allows us to study, by standard
methods [6], [14], [16], [17], the stability of both replica symmetrical and replica symmetry
broken solutions in the glassy phase.

However, there are two major difficulties. The introduction of a large number of variational
parameters is required to study higher steps of RSB. It is difficult to analyze the stability of
the RS solution as the Hessian is non-diagonal in the q-space. Therefore, we use an addition
approximation which allows us to overcome these difficulties at least for the globular state.

Here we are interested in a simpler description of the transition from the liquid-like globule
to the glassy globule. The numerical analysis shows that in the vicinity of transition only
correlations on the first mode are essential, Fab1 , a 6= b. In the globular state the density of
the globule is mainly determined by the balance between two- and three-body terms, and the
spring term can be neglected to the first approximation [18]. Therefore, we neglect the spring
term κ sin2(πq/N) in the set of saddle point equations,

∂Fn/∂F
ab
q = 0 , a, b = 1 . . . n . (10)

Admittedly we then lose details of the scale dependence of the transition, but the main
phenomenon persists and is then described by a simple Flory-type theory. Thus, the set
of equations (10) has q-independent solution,

Fabq ≡ F
ab
1 , Dab

ij ≡ D
ab = 2NFab1 , Xa...a

1...m = (Daa/2)
m

(m+ 1) .



a. moskalenko et al.: glass transition of an amphiphilic etc. 139

The effective free energy now takes the form

βFn/N = −
3

2
Tr logF̂1 + û2

∑
a

ρa + û3

(
4

3

)3/2∑
a

ρ2
a + (11)

+ û423/2
∑
a

ρ3
a −B

∑
a,b

ρaρb
(
1− (Rab/2)2)

)−3/2
,

where ûm = um/(m!(2π)3m/2), B = ∆̃2/(2!(2π)3), Rab = Dab/(DaaDbb)1/2 and ρa ≡
N/Daa3/2, ρa is proportional to the density of the globule. Here we have omitted some
irrelevant constants and kept terms up to the forth virial coefficient. We note that eq. (11)
can be studied numerically, and that the results are comparable to full studies of eq. (8) in
the limit N � 1. This provides us with an opportunity to pursue a numerical study of the
complete phase behaviour [18] by solving the set of equations (10) in the limit n→ 0.

In comparison with RSB solutions of (10), RS solutions have lower free energy and smaller
radius of gyration, but are characterized by a higher degree of phase separation. The analysis
of the phase separation in the system is based upon the consideration of a corresponding order
parameter,

δR2
g = 1/2N−2

∫
dsds′〈λs(r(s)− r(s′))2〉0 , (12)

where δR2
g is the difference of the square radii of gyration in the case of two letter copolymers

with equal concentrations of both monomer types, δR2
g = R2

gA − R2
gB. In the liquid-like

globule phase δR2
g is proportional to ∆̃ and is rapidly increasing until the freezing transition

takes place. In the vicinity of the transition in the glassy phase δR2
g remains practically

constant for both RSB and RS solutions. We may speculate here that the RS solution
probably corresponds to a globule with a hydrophobic core and hydrophilic shell, whilst the
RSB solutions correspond to metastable globules with more than one hydrophobic core. We
point out that the effect of the scale-dependent freezing disappears as the connectivity term
is excluded from the consideration. We leave the details and more extensive discussion for a
later publication and proceed to establish a relation between the model of random copolymer
and conventional spin-glass models.

We assume that correlations between different replicas are small in the vicinity of the glass
transition and that the density of globule remains constant, ρa ≡ ρ. Then, expanding (11)
around R̂ = 0 and omitting irrelevant constants, the effective free-energy density of a dense
copolymer globule can be rewritten in a form well known from the studies of the Ising model
of spin-glass [14],

βFn/3N =
r

4
TrR̂2 −

w

6
TrR̂3 −

y

8

∑
a,b

(Rab)4 −
u

8
TrR̂4 +O(R̂5) , (13)

where w = 1, y = (5/16)Bρ2, u = −1, Raa = 0 and 0 ≤ Rab < 1. The transition temperature
is given by the equation r = 1 − Bρ2/2 = 0. Here we use the notation of ref. [14]. In this
approximation all parameters of the model, u2,3,4 and ∆, are present in (13) through the
combination Bρ2, ρ = ρ(u2, u3, u4, B). This defines only one coupling which is consistent with
the previous statement that eq. (13) is only able to describe the transition to a glassy state.

We point out that eq. (13) may help clarify the relation between glass transition of a
random copolymer and Ising spin-glass. It was earlier noted [13] that there were also some
similarities in the dynamical properties. Deeper relations between these transitions, and
dynamical phenomena, may emerge in time. At this stage, however, we have succeeded only
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in outlining a suggestive relationship between two theories. If a true or approximate mapping
does exist near the transition, then it may be best found by examining the Hamiltonians.

Finally we note that the scale-dependent freezing can be indeed deduced from a replica
variational approach.
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