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PACS. 73.23Ad – Ballistic transport.
PACS. 73.61−r – Electrical properties of specific thin films and layer structures (multilayers,

superlattices, quantum wells, wires, and dots).

Abstract. – A self-consistent theory of the admittance of a perfect ballistic, locally charge
neutral wire is proposed. Compared to a non-interacting theory, screening effects drastically
change the frequency behavior of the conductance. In the single-channel case the frequency de-
pendence of the admittance is monotonic, while for two or more channels collective interchannel
excitations lead to resonant structures in the admittance. The imaginary part of the admittance
is typically positive, but can become negative near resonances.

The ac conductance (admittance) in mesoscopic systems attracted recently strong interest,
mostly due to the finite-frequency measurements of Aharonov-Bohm oscillations in rings [1]
and noise in diffusive metallic wires [2]. The theoretical investigation of the problem raises an
important question: Standard calculations of the conductance, employing either a scattering
(Landauer) or a linear response (Kubo) approach, describe the current in response to the
external electric field, assuming the latter to be uniform (linear response) or ignoring the
actual distribution of the potential (dc scattering approach). However, in realistic systems
the potential is not uniform due to the screening effects. In dc transport the actual potential
distribution is unimportant for the evaluation of the conductance due to the Einstein relation.
In contrast, the ac response is strongly sensitive to the distribution of the potential inside the
sample [3], [4]. In its turn, the potential profile is related via the Poisson equation to the
electron density. Thus, the admittance has to be found self-consistently [5].

Indeed, early attempts to generalize dc conductance calculations to the ac case (see, e.g., [6])
within the free-electron approach proved to be not self-consistent and failed to conserve
current. The sensitivity of the ac conductance to different electric-field configurations is
illustrated in ref. [7]. The construction of a current-conserving theory is not an easy task.
Presently, two approaches are available in the literature. First, the self-consistent ac scattering
approach [3], [4] allowed to study the low-frequency admittance and to express it through the
scattering matrix for an arbitrary system [4], [8]. For arbitrary frequencies, the admittance
is expressed through functional derivatives of the scattering matrix with respect to the local
electric potential. Alternatively, one can employ the methods of non-equilibrium statistical
mechanics, and express the ac response of an interacting system through the Green’s functions
in a Keldysh formalism [9], [10]. Although these methods are quite powerful, their application
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to specific problems meets substantial technical difficulties. The high-frequency response
of coupled infinitely extended one-channel liquids has been investigated by Matveev and
Glazman [11]. Here we are particularly interested in wires connected to reservoirs. Compared
to infinitely extended wires, the presence of reservoirs modifies the low-frequency response,
possibly up to frequencies determined by a transit time.

Below we develop a self-consistent theory for the admittance of a perfect ballistic wire
(directed along the x-axis) of length L and cross-section S � L2 (3D) or width W � L
(2D), placed between two reservoirs [12], [13]. The wire is assumed to be shorter than all the
lengths associated with inelastic scattering. Here we treat interactions in the random phase
approximation (RPA). More specifically, we are interested in the limit where the wire is locally
charge neutral. This is realistic in two situations: i) Suppose for a moment that the wire is
coupled to a back-gate through a capacitance c per unit length. In the one-channel case, this
system is equivalent to the Luttinger model with short-range interactions [14]; the interaction
constant g and the capacitance are related by g2 = (1 + e2/(πvFc))

−1. Here vF is the Fermi
velocity which determines the density of states 1/πvF. The charge neutral case corresponds
to the zero-capacitance limit (or g = 0 limit), that is, the back gate is at a very large distance
from the wire. This example also shows that the condition of applicability of RPA e2 � vF is
compatible with a small interaction constant g since the capacitance can be very small. Based
on this model the results presented below are valid for frequencies up to vF/R, where R� L
is the distance between the wire and the gate. The case of many channels cannot be reduced
to the Luttinger model. ii) In the absence of a back-gate (or for R� L), the results presented
below are valid for frequencies below the plasma modes of a wire. For one channel these
frequencies are of order ωp ∼ vF/L (see, e.g., [11], [15]); for a multi-channel wire the highest
lying plasmon branch (vF/L) provides the frequency which limits the results presented below.

We show that screening plays a crucial role for the frequency dependence of the admittance:
a wire with only one transverse channel exhibits a monotonic frequency dependence, while a
wire with several transverse channels shows resonant structures in the admittance, due to
collective interchannel excitations in which an accumulation of charge in one channel is locally
compensated by a charge depletion in another channel. As a consequence, the imaginary part
of the admittance changes sign as a function of frequency.

General formulation. The ac transport in a 1D perfect wire is determined by the following
system of equations for the local current j, the particle density ρ, and the electric potential ϕ/e:

j = jp − (4πe)−1∇∂tϕ; jp(x) = e
∑
a

va
(
ρ+
a − ρ

−
a

)
, (1)

∆ϕ = −4πe2
∑
a

(
ρ+
a + ρ−a

)
, (2)

−∂xjp = e∂t
∑
a

(
ρ+
a + ρ−a

)
, (3)

ρ±a (x, t) = ρ±0a(x, t) −

∫ L

0

Π±a (x, x′, t− t′)ϕ(x′, y = 0, z = 0, t′)dx′ dt′. (4)

The index a labels transverse channels (1 ≤ a ≤ N⊥), and ρ±a denotes the excess density (with
respect to the positive background) of right/left-movers in the channel a, which depends only
on the coordinate x. The velocities va of left- and right-movers in the same channel coincide,
va = (πSνa)−1. Here νa is the density of states in the channel a; the total density of states is
given by ν =

∑
νa. Equations (1)-(4) are valid within the ballistic wire extending from x = 0

to x = L. Furthermore, the quantities ρ±0a are “bare” densities of particles in the channel a
injected from the left/right reservoir; the distribution function of these particles is determined
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by the distribution function of the left/right reservoir at the time of injection. Specifying the
chemical potentials in the left/right reservoirs µL = V (t), µR = 0, we obtain

ρ±0a =
1

2
νa

∫ ∞
0

fL,R(ε)dε,

and there follow ρ+
0a(x, t) = νaV (t−x/va)/2 and ρ−0a = 0. Note that for x = L the bare density

of right-movers does not vanish: We do not consider in detail the transition region between
the wire and the reservoirs, where the electrons are distributed over many quantum channels.

Finally, Π±a (x, x′, t−t′) is the polarization function, responsible for the density of right/left-
movers induced in the channel a at the point x and time t due to a potential perturbation ϕ
at x′, t′. If the spatial and the temporal structure on the scale of p−1

F (Friedel oscillations) and
ε−1
F , respectively, can be neglected, the polarization function quite generally has the form

Π±a (x, x′, t) = (νa/2)
[
δ(x− x′)δ(t)− ∂tP

±
a (x, x′, t)

]
, (5)

where the function P±a is the conditional probability to find a right/left-moving particle in the
channel a at x at time t, if it was at x′ at t′ = 0. For a ballistic channel we have obviously

P±a (x, x′, t) = θ(t)δ(x′ ± vat− x). (6)

Now we return to our system of equations. First, we note that the Poisson equation
(2) and the continuity equation (3) together with the definition of the current (1) imply
∂j/∂x = 0, i.e. the current is conserved and does not depend on the space point. The
particle current jp is generally not conserved, and the displacement current is required for the
self-consistent treatment. However, if the system is locally charge neutral, the case of interest
here, the term ∆ϕ in eq. (2) vanishes simultaneously with the displacement current in eq. (1).
Furthermore, we note that the system of equations (1)-(4) is excessive: 2N⊥+2 equations (2),
(3), (4) contain 2N⊥ + 1 unknown fields ϕ and ρ±a . Equation (1) is already a consequence of
the continuity equation and the Poisson equation. It is thus sufficient to consider eqs. (1), (2)
and (4): The fact that the resulting current is position independent can be used as simple test
of consistency.

It is convenient to Fourier-transform the equations with respect to time, and to introduce
new variables: the full density in the channel a, ρa = ρ+

a + ρ−a , and the density difference
ζa = ρ+

a − ρ
−
a . The bare density injected by the reservoir into channel a in response to a

potential oscillation Vω in that reservoir is ρ0a(x) = (νaVω/2) exp[iωx/va]. The combined
contribution of the probabilities P± gives after Fourier transform a term

pa(x) = (iωνa/2va) exp [iω|x|/va]

in the polarization function. It is useful also to introduce the operator Q̂a,

Q̂ag = νag(x) +

∫ L

0

pa(x− x′)g(x′)dx′.

With these abbreviations, we obtain

j = e
∑
a

vaζa(x); ζa(x) = ρ0a(x)−

∫ L

0

sign(x− x′)pa(x− x′)ϕ(x′)dx′ , (7)∑
a

ρa(x) = 0 , (8)

ρa(x) = ρ0a(x)− Q̂aϕ(x), (9)
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where ϕ(x) ≡ ϕ(x, y = 0, z = 0). Combining eqs. (8) and (9) gives a closed integral equation
for the potential, generated in response to the injected density,∑

a

Q̂aϕ =
∑
a

ρ0a. (10)

Now we have to solve the equation (10) for the potential, and then calculate the current
from eq. (7). The admittance is determined by G(ω) = ejS/Vω. We re-emphasize again that
the current and thus the admittance do not depend on the space point x, which is a check of
the consistency of our approach.

One channel. For the case of one channel with the velocity v the solution of eq. (10) has
the form

ϕ(x) = Vω

(
1−

2v

iωL

)−1 (
1−

x

L
−

v

iωL

)
. (11)

For ω � v/L the potential is screened, and everywhere in the wire is close to one-half of the
external voltage. On the other hand, for ω � v/L the potential drops linearly. Equation (10)
describes thus the crossover from a uniform potential at low frequencies to a uniform electric
field at high frequencies. Calculating the admittance, we obtain

G(ω) =
e2

2π

(
1−

iωL

2v

)−1

. (12)

The imaginary part of the admittance is positive (inductive). For low frequencies we reproduce
the behavior found previously in ref. [8], G(ω) = e2N⊥/π − iωE, with an emittance

E = −
e2

4
νLS. (13)

Two channels. The Poisson equation for the potential (10) for a wire with two channels
a and b can be solved by noticing that

(ω2 + v2
a∂

2/∂x2)Q̂aϕ = νav
2
aϕ
′′.

This implies that the potential has the form

ϕ(x) = α+ βx+ γ exp[iξx] + δ exp[−iξx],

where the coefficients α, β, γ and δ are determined by the substitution of this ansatz into
eq. (10). Interestingly, now, in addition to the constant and linear part, the potential acquires
also a spatially oscillating part with a wave vector given by ξ = ω/(vavb)

1/2. The oscillatory
structure of the potential is also manifest in the admittance. Indeed, we find a non-trivial
dependence of the conductance on the wave vector ξ and the density-of-states ratio η =
(va/vb)

1/2,

G(ω) =
e2

2π
(η2 + 1)

(
−
iξLη

2
+

(η3 + 1)(η + 1)− (η3 − 1)(η − 1) exp[iξL]

(η + 1)2 − (η − 1)2 exp[iξL]

)−1

.

The conductance is symmetric with respect to the replacement η → η−1, as it must be. For low
frequencies we reproduce again the static quantized conductance e2/π and the emittance (13).
The real part is strictly positive, although now both the real and imaginary part exhibit
oscillations on top of the monotonic behavior found for the single-channel wire. In the limit
va = vb, which corresponds to a spin degenerate one-channel conductor, these oscillations
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Fig. 1. – Real (a) and imaginary (b) parts of the conductance in units of e2/2π for the two-channel

case as a function of the parameter Ω = ωL/(vavb)
1/2; the parameter η = (va/vb)

1/2 is equal to 1
(Curve 1), 5 (2) and 20 (3). Resonances are due to the interchannel excitations.

vanish. The behavior of the admittance as a function of frequency for different values of the
parameter η is shown in fig. 1. Note that the imaginary part may change sign in the vicinity
of the points ω ∼ 2πn(vavb)

1/2/L (see below), if η is large enough. A large η occurs for Fermi
energies just above the threshold of the second conductance channel.

The oscillatory structure of the admittance can be understood by investigating the poles of
the admittance. In the limiting case η � 1, we obtain for the spectrum of collective modes

ω =
(vavb)

1/2

L

[
2πn(1− η2)− 2iη

]
, n ∈ Z.

The purely imaginary eigenvalue with n = 0, as for one channel, corresponds to the charge
relaxation between the wire and the reservoirs via ballistic motion, while the resonances for
n 6= 0 correspond to nearly neutral interchannel excitations. These modes are essentially
standing waves induced in both channels simultaneously but with densities of opposite signs,
ρa = −ρb ∝ exp[iξx] − exp[iξ(L − x)]. The decay of these excitations, Im ω = −2va/L, is
determined by the carriers in the channel with the lower velocity. Interestingly, we find that
due to the coupling to reservoirs all the collective modes are damped with a relaxation constant
which is the larger the shorter the wire is.

Many channels. For N⊥ > 1 channels the potential has the form

ϕ(x) = α+ βx+

N⊥−1∑
i=1

[γi exp[iωλix] + δi exp[−iωλix]] ,

and the positive quantities λi are solutions of the equation∑
a

va

1− v2
aλ

2
= 0. (14)

For arbitrary N⊥ and ω, further analytical progress is hard, but the problem can be solved for
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low frequencies ω � min(va/L). We obtain

G(ω) =
e2N⊥

2π
+ iω

e2

4
νSL− ω2 e

2π

8
(SL)2

∑
a

ν2
a + . . . . (15)

In conclusion, we investigated the admittance of a perfect ballistic wire in the frequency
range below vF/L. We showed that the screening effects are very important for the admittance,
and provide the current conservation. For one channel, the admittance is a monotonic function
of frequency, whereas for two or more channels it contains also oscillatory components due to
the density redistribution between different channels. In particular, the imaginary part of the
admittance is generally positive (inductive-like), but can change sign and become capacitive in
the vicinity of resonances due to the interchannel excitations. The wire exhibits resonances due
to damped collective modes. The resonant effects predicted can be measured experimentally;
the collective mode frequencies depend on the relative electron concentration in the different
channels and near the threshold for a new quantum channel, where the resonances are most
pronounced, can be made very small.
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Büttiker M., Phys. Rev. Lett., 77 (1996) 143; Brouwer P. W. and Büttiker M., Europhys.
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transport, Levinson Y. B., Zh. Ėksp. Teor. Fiz., 95 (1989) 2175 (Sov. Phys. JETP, 68 (1989)
1257); Kawabata A., J. Phys. Soc. Jpn., 65 (1996) 30; cond-mat/9701171 Preprint (1997).

[14] Blanter Ya. M., Hekking F. W. J. and Büttiker M., cond-mat/9710299 Preprint (1997).
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