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Abstract. – The horse-carrot theorem bounding the entropy production in processes with a
fixed number of relaxations is extended to steady flow processes. The dissipation turns out
to be related to a path of flows rather than states. The example of fractional distillation is
presented and shows how null directions for the geometry turn out to be useful in the analysis.
The implied distillation column design offers potentially significant energy savings.

Introduction. – The Riemannian structure of thermodynamic theory contains important
and hitherto barely tapped information concerning a physical system. The structure runs deep;
its presence can be felt at all levels of physical description. At the quantum-mechanical level,
the distance equals the angle between pure states [1]. For mixed quantum states, the distance
measures the reliability of an experiment designed to optimally distinguish between the two
states along a one-parameter family of density operators [2]. At the statistical mechanical level,
distance is the number of statistically distinguishable intermediate states [3] as we transform
one state into another. In this context, statistical distance was originally introduced by R.A.
Fisher to measure genetic drift [4] and is the basis for Amari’s information geometry [5].
Ruppeiner [6], [7] and Diosi et al. [8] have used the requirement of covariance with respect
to this geometry to give an important correction to fluctuation theory. Numerous authors
have speculated about the meaning of the curvature defined by this geometry as a measure of
stability or interaction strength [6], [7], [9], [10]. Finally, at the macroscopic level, this same
distance [11] between two equilibrium states of a thermodynamic system equals the minimum
entropy produced in a process that transforms one state into the other, multiplied by twice
the number of relaxations during the transformation [12], [13]. This result, known as the
horse-carrot theorem, is the focus of the present paper.

The horse-carrot theorem. – The horse-carrot theorem involves a process in which a system
(the horse) is coaxed along a sequence of states by successive contacts with generalized baths
(the carrots). In the first version of the theorem [13], the generalized baths change continuously
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in time. The entropy production from the coupling between the system and the bath is
bounded by

∆Su ≥ L
2ε/τ , (1)

where ∆Su is the entropy produced, L is the length of the process measured in a geometry
whose metric tensor equals the second derivative of the entropy of the system with respect
to its extensive variables, ε is a mean relaxation time, and τ is the total time of the process.
While representing a useful and general bound that mixes static and dynamic properties of
the system, the inequality has several shortcomings hidden in the averaging process leading
to ε. It was recently shown [14], [15] that the equality version of the theorem represents the
minimum entropy production only for a fixed total number of relaxations, i.e. for fixed

∫ τ
0 dt/ε,

where ε is the instantaneous relaxation time. This fact severely limits the usefulness of this
version of the theorem as a starting point for optimal control in a fixed time. The fixed-time
problem turns out to require a constant rate of entropy production.

Our concern in the present paper is the second version of the horse-carrot theorem [12]. This
version applies for process times τ that are many times the relaxation time of the system. This
discrete form of the theorem asks the question: where along a given sequence of states should
k generalized baths be located so as to minimize the total entropy produced when the system
relaxes successively from a state of equilibrium with bath j − 1 to a state of equilibrium with
bath j, j = 1, . . . k? Although the process time no longer plays an explicit role, this version of
the theorem has relevance for finite-time processes that proceed by stages in which each stage
represents a state of equilibrium. A number of important processes are of this type, including
fractional distillation. The theorem again gives a bound on the entropy production in terms
of the thermodynamic distance traversed and the number of relaxations

∆Su ≥
L2

2k
. (2)

This version of the theorem gives a specific recipe for how the minimum may be achieved:
The k baths to which the system equilibrates should be placed at k equidistant positions along
the curve the system is to traverse.

The sequence of equilibrations to intensities of a bath bears a strong resemblance to tradi-
tional textbook descriptions of a quasistatic process [16]. The trouble is, many processes cannot
be so realized. One example of a process which cannot, is the change in scale of a system. The
usual description of a quasistatic process does not allow for such changes since they cannot
occur as a system responding to intensity differences. In the geometry, such changes represent
zero distances, i.e. if the scale of the system is not fixed, the structure is only semi-Riemannian.
Null directions result from the linear growth of the entropy as we scale any one phase. This
linearity makes the second derivative, i.e. the components of the metric tensor, vanish along
such directions. Forming an appropriate combination of such null directions by simultaneously
scaling two phases of a pure substance can represent a phase transition [17], [18]. It follows
that such phase transitions appear to have no “intrinsic” irreversibility associated.

Another example of a process that, at least at first glance, appears to be unrealizable as a
horse-carrot process, is the separation of a solution into its pure constituents. In the present
paper, we show how to associate a horse-carrot process to such a separation. Surprisingly,
it turns out that the corresponding path is not a one-parameter sequence of states of the
system along the process but rather a one-parameter sequence of material flows. The example
we treat is fractional distillation and forces a direct confrontation with the null directions
problem described above. Rather than posing difficulties, the null directions are essential for
splicing the stages of the process into one continuous path.
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Thermodynamic length and entropy production. – The thermodynamic length L is given
by the line element [19]

(dL)2 = −dZtD2SdZ = −dWdZ (3)

=
dXtD2UdX

T
=

dY dX

T
, (4)

where Z is the vector of extensive variables of the system Z = (U, V, . . .), W = ∂S/∂Z =
(1/T, p/T, . . .), and D2S is the matrix of partial derivatives ∂2S/∂Zi∂Zj . Similarly, in the
energy representation, X = (S, V, . . .), Y = ∂U/∂X = (T,−p, . . .), and D2U is the matrix of
partial derivatives ∂2U/∂Xi∂Xj.

The key to the discrete horse-carrot theorem is the correspondence between the line element
of the geometry, (dL)2, and the dissipation in a small equilibration with a bath [12]. The
dissipation is given by

dSu = dSsystem + dSbath (5)

=
n∑
i=1

(Wi −W
0
i )dZi , (6)

where n is the number of degrees of freedom, and a zero superscript indicates a quantity
referring to the bath. We have also made use of the conservation laws dZi = −dZ0

i . Integrating
to equilibrium at Wi = W 0

i gives, to second order in ∆Z = Z − Z0 ,

∆Su =
(∆L)2

2
=

∆ZtD2S∆Z

2
. (7)

The horse-carrot theorem follows by minimizing the sum of such (∆Lj)
2 corresponding to the

j-th step along a k-step process while keeping

L =
n∑
j=1

∆Lj (8)

fixed [20].
In our analysis below, we exploit the correspondence between the square of the line element

and the entropy production for a small step. This will enable us to identify a path in the
state space of the mixture with the steady-state operation of the distillation column. Our
presentation begins with a description of the column and the associated entropy production.

Dissipation in a distillation column. – Fractional distillation is a process used to separate
a mixture of compounds to specified purities. The separation is based on the difference in the
boiling points of the components. Fractional distillation is performed within a vertical column
divided into trays which constitute the k stages for the process. The mixture to be separated
is introduced near the middle of the column at the feed tray and the separated components
are removed at the top as distillate D and at the bottom as bottoms B. (See fig. 1.) Boiling
occurs on each tray resulting in the formation of vapor which is then bubbled through the
liquid at the next higher tray. Each tray is also equipped with an overflow tube which returns
excess liquid to the next lower tray. For steady-state operation, the net difference between
these two flows must equal D at each tray-tray interface above the feed and B at each interface
below the feed.

Conventionally, a heat source is connected at the bottom tray and a heat sink is connected at
the top tray creating a temperature gradient along the column. This results in the net upward
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Fig. 1. – A schematic distillation column with flows: feed F, distillate D and bottoms B. The close-up
shows two adjacent trays including overflow tubes for downward flow of liquid L and bubble caps for
upward flow of vapor V .

motion of low boiling component and downward motion of high boiling component. We depart
from the conventional design and use additional heat sources (sinks) along the column to adjust
the temperature at each plate. We then ask for the sequence of temperatures which minimizes
the total dissipation inside the column. This being our goal, we take the transport of heat and
matter between the column and its surroundings as reversible. For convenience and brevity, we
treat only a binary mixture and assume that the pressure is constant throughout the column.

Since we assume that each stage is in equilibrium, the losses occur as the upward flow of
vapor and downward flow of liquid equilibrate at the next trays. For concreteness, consider
the bubble of vapor going up —the analysis for the downward flow of liquid proceeds similarly.
The losses can be counted by a conceptual rearrangement of what occurs. We consider the
bubble of vapor to be isolated except for the exchange of heat and pdV work with the two
phase fluid in the tray above. Accordingly, this fluid acts as a bath with a certain temperature
and pressure. In this manner, the bubble is brought to equilibrium at the temperature and
pressure of the next tray by a horse-carrot process whose irreversibility is given by the distance
squared. Since this squared distance is an extensive quantity, the size of each bubble does not
matter; the scale is set by the number of moles of material moving per unit time. In the final
state of each bubble, some of the vapor has condensed to liquid, but each phase is exactly
at the composition in the next tray. Thus if we now allow mass transfer between the bubble
and its surroundings, the mixing is reversible [21]. Our conceptual rearrangement of events is
justified since in either case the net effect is the complete equilibration between the bubble of
vapor and the equilibrium system in the next tray.

Since for the present calculation we assume constant pressure, the second form of the metric
in eq. (4) is the most convenient and gives

∆Su =
1

2
(∆L)2 =

1

2

∆T∆U

T
=

1

2

Cσ(∆T )2

T
, (9)

where Cσ is the constant pressure saturation heat capacity of the two-phase mixture in
equilibrium [22]. We get the same expression for the liquid, although ∆T has the opposite
sign. Since the dissipation only depends on (∆T )2, we would get the same entropy production
if the liquid were also going up the column. In this way we construct a path from T0 = Tbottoms

to Tk = Tdistillate rescaling between each tray to readjust the quantity of vapor, V , and liquid,
L, at each temperature.
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To specify the path and thus be able to apply the horse-carrot theorem, it remains to set
the scales of V and L at each stage. This is achieved by the mass balance conditions

V − L =


D above feed ,

−B below feed ,

(10)

yV − xL =


xDD above feed ,

−xBB below feed ,

(11)

and the temperatures of the two trays which determine the mole fractions y and x, in the
gaseous and liquid phases, respectively. If the temperatures of the trays are taken sufficiently
close to allow neglecting terms in (∆T )3, V and L are smooth functions of T except at the
feed plate where we switch between the appropriate balance conditions. The whole process
becomes a continuous, piecewise smooth path in the state space of the two-phase system by
including a rescaling branch at the feed plate which contributes length zero. This path is
known in the literature [23] as the minimum reflux values of V and L at each T .

We have hereby established a path such that the dissipation of small steps along this path
equals the squared length of the corresponding displacement. Therefore, the horse-carrot
theorem applies and we can conclude that, to minimize total entropy production, the tray
temperatures should be adjusted to equalize the thermodynamic distance between trays, or
perhaps more accurately, between the tray-tray interfaces. To find the optimal temperature
profile, we need to find temperatures Tj such that∫ Tj+1

Tj

√
Cσ

T
dT =

1

k

∫ Tk

T0

√
Cσ

T
dT, j = 0, . . . , k − 1. (12)

Comparing the entropy production of the conventional column with the entropy production
using our temperature control offers very significant savings. For example, for a 71-tray column
separating a 50-50 mole percent benzene-toluene mixture into 99% pure constituents reduces
the entropy production by about a factor of four over the conventional process. Such savings,
widely applied, would offer a significant reduction in industrial energy consumption; over 10%
of such consumption is used for distillation processes [24]. Despite this fact, the economic
advantages of an equal thermodynamic distance column remain unclear. The design requires
more plates than conventional columns and a heat pump which can carry out the requisite
temperature controls at each tray. This however is offset by significant reductions in the size
of the reboiler and the condenser.

Conclusions. – The derivations above extended the discrete horse-carrot theorem to the
steady-state operation of a separation process. The results express the dissipation in terms of
the length of a path in the equilibrium state space of the mixture and show how to optimally
control the temperatures of the stages along such a separation. The derivations assume that
the mixing on each tray is sufficiently good to assure complete equilibration.

Our findings show how to associate a path and a quasistatic process to a steady flow process.
Surprisingly, the quantities in the associated quasistatic process are the flows rather than the
states along the process. The procedure is readily adapted to any staged steady flow process
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in the limit of many stages. We start from the flow vectors along the process. Since these flows
equilibrate at the next stage, the entropy produced by such small relaxations is the square of a
length element. For the purpose of counting dissipation, all flows can be taken unidirectional
and summed exactly as for distillation. The corresponding path consists of the flows for the
process in the limit of infinitely many stages.
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