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Abstract. – Optical tunneling effect through dielectric junctions with subwavelength trans-
verse sizes has been demonstrated some years ago. In this letter, we demonstrate how similar
effects can be exploited to perform photonic transfer through a subwavelength optical wave-
guide (SOW) by structuring its optical index along the direction of propagation. The optical
transmittance of the SOW is computed self-consistently in direct space through the numerical
solution of a Dyson equation. We apply this scheme to investigate the optical properties of
different SOW architectures. Even under total internal reflection, in which the light is coupled
to the SOW by an evanescent mode, an efficient optical transfer can be expected.

The common way of transferring optical energy between two dielectric media consists in
connecting them with an optical waveguide. Traditionally such devices are fabricated with
homogeneous materials and guide optical waves without losses over very large distances.
According to the Rayleigh criterion [1], the smallest diameter of such optical waveguides is
of the order of the incident wavelength λ. For transverse sizes smaller than λ, the incoming
electromagnetic energy decays exponentially inside the guide along the direction of propagation
(longitudinal direction).

Based on the Rayleigh criterion, most waveguides developed up to now appear to be
homogeneous, i.e. without any optical index modulation along the longitudinal direction.
However, breaking the homogeneity introduces new interesting properties. For example,
introducing well-calibrated microcavities inside a channel waveguide modulates the optical
transmittance of an initially homogeneous waveguide [2] and builds a photonic band structure
in which some localized states can be created by adding localized defects in the linear periodic
structure [3].

In a closely related context, the Rayleigh criterion is clearly broken by approaching a pointed
fiber to detect the evanescent waves. In a sense, this is a way to detect the light by modulating
the optical index as close as possible to the evanescent fields in order to convert them into
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Fig. 1. – Schematic drawing of a planar optical junction composed by three dielectric media of optical
index n1, n2 and n3. L0 represents the junction spacing. When the first medium is illuminated below
the critical refraction angle the system is in the so-called tunnel configuration. Throughout all the
paper this geometry will be considered as the reference system for the description of the excitation
electromagnetic field {E0(r, ω),B0(r, ω)} but also to define the initial field susceptibilities S0 and Q0.

radiative waves [4-8]. The various results obtained in subwavelength optics raised several
important questions concerning the physical mechanisms underlying photonic transport in
mesoscopic and nanoscopic optical systems. For example, how is it possible to maintain the
transmittance through an optical waveguide at a sufficiently useful level when its diameter is
scaled down to a fraction of the incident wavelength? More precisely, what kind of relation
between the guide diameter and the linear optical index modulation must be applied to enhance
the photonic transfer efficiency? Very recently, an interesting gateway has been suggested in a
work by Takahara et al. [9]. In this paper, a concept of nanometric tubular waveguide relies on
the particular optical (plasmon) properties of a dielectric-metal interface of cylindrical shape.
Although in real metal the efficiency of such guide designs is limited by the dielectric losses,
they represent a first step toward the development of new nanometric optical-guide concepts.

In this paper, we analyze another fondamental mechanism to perform photonic transfer
through a subwavelength optical waveguide (SOW) [10]. By structuring periodically the SOWs
optical index along an appropriate direction, we demonstrate that even in the subwavelength
range the opening of a tunnel photonic band allows a significant amount of energy to be
transferred. The optical transmittance of the SOW is obtained numerically from a generalized
propagator which is itself computed in direct space through a Dyson equation. We apply
this scheme to investigate the optical properties of different SOW architectures. In particular,
under total internal reflection illumination, in which the light is coupled to the SOW by an
evanescent mode, it turns out that an efficient optical transfer can be expected.

In a first step, let us consider a simple optical junction formed by three dielectric media
of optical indices n1, n2, and n3 = n1 (with n1 > n2, cf. fig. 1). When such a junction is
illuminated in total internal reflection (TIR) from the first medium n1, its transmittance T
(defined by the normalized energy flux transmitted in the third medium) displays a quasi-
exponential decay with respect to the spacing L0 [1]. Beyond the contact region, it can be
approximated by

T (L0) = A exp[−Γ(θ0, k0)L0] , (1)

where, in this case, the decay factor Γ = 2[n2
1 sin(θ0)2−n2

2]k0 depends only on the incident angle
θ0 and the wave vector modulus k0 in vacuum. The factor A depends on the polarization mode
used to illuminate the system. According to this simple relation, beyond a certain spacing L0,
equal to a few incident wavelengths, optical waves cannot reach the third medium anymore.
This tunneling phenomenon is exploited in scanning near-field optical microscopy [4, 6, 8]
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and also in nonresonant electron transfer through a tunnel barrier [11, 12]. Furthermore,
by structuring the tunneling barrier either with an atomic [13] or a molecular wire [14], it was
recently possible to understand and control the mechanisms governing this exponential decay
in the tunneling regime [15]. On the other hand, the manifestation of electronic wave character
leads also to the well-known quantification of the resistance in the ballistic regime [16] which
is equivalent to the quantification of the transmittance in resonant optical energy tranfer [17].

Now let us see what happens when a rod-shaped optical guide (optical index now(r)) is
connected between the incident (1) and the exit (3) media. In this case, both the initial
evanescent electric and magnetic fields E0(r, ω) and B0(r, ω) are strongly modified by this
rod. As demonstrated in ref. [18, 19] the new electromagnetic-field state {E(r, ω),B(r, ω)}
can be derived everywhere in the junction by introducing two generalized propagators labeled
K(r, r′, ω) and L(r, r′, ω), respectively. If the SOW responds linearly to the excitation, the
electric part E(r, ω) of the radiation can be described by the following linear relation:

E(r, ω) =

∫
v

K(r, r′, ω) ·E0(r′, ω)dr′ , (2)

where the integral runs over the volume occupied by the optical wire. As detailed in ref. [18],
the dyadic K(r, r′, ω), also called generalized electric-field propagator, can be formulated in
terms of the optical-field susceptibility tensor S(r, r′, ω) associated with the entire system
(SOW plus dielectric surrounding):

K(r, r′, ω) = δ(r− r′) + S(r, r′, ω) · χow(r′, ω) , (3)

where χow(r′, ω), the linear electric susceptibility of the optical waveguide, is merely related
to its optical index by the relation

χow(r′, ω) =
(n2

ow(r′, ω)− 1)

4π
. (4)

The dyadic tensor S(r, r′, ω) in eq. (3) can be derived numerically by using Dyson’s equation
for the electric field

S(r, r′, ω) = S0(r, r′, ω) +

+

∫
v

S0(r, r′, ω) · χow(r′, ω) · S(r, r′, ω)dr′ , (5)

in which S0(r, r′, ω) is the field susceptibility associated with a homogeneous dielectric refer-
ence junction composed of two planar interfaces (cf. fig. 1). An analytical expression of this
second-rank field susceptibility can be deduced from a pioneering paper by Agarwal [20]. In
addition, other different numerical techniques available in the literature can be successfully
applied to the calculation of such response function [21,22].

In our electrodynamical treatment, the intrinsic optical properties of the SOW in interaction
with its dielectric surroundings are completly contained in the dyadic S(r, r′, ω) which is the
key ingredient to solve the problem. In the past, various matching boundary-conditions–based
methods have been used for the calculation of S(r, r′, ω) near systems of simple symmetry
(spheres, cylinders, planes, . . . ) [23]. With highly complex optical systems such as those
considered here, other strategies must be adopted. As discussed in [18,19], the recent develop-
ments of real-space approaches for electromagnetic scattering and light confinement established
a powerful tool for the calculation of the electromagnetic response of optical systems composed
of several domains of arbitrary shape and optical indices. In that scheme, the field susceptibility
tensor S required to obtain the generalized field propagator K(r, r′, ω), can be derived from
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Fig. 2. – Variation of the transmittance of a subwavelength homogeneous optical wire (SOW) (cf.
inset) as a function of the incident wavelength λ. In this simulation of the SOW transmission
spectrum, the optical index now is identical to the index of the bare optical junction (now = 1.5)
and L0 = 2.82 µm. The calculation has been made in p-polarized mode and θ0 = 46◦.

the appropriate discretized form of a Dyson equation (5) over the whole volume occupied by
the SOW:

S(ri, rj , ω) = S0(ri, rj , ω) +

+
n∑
k=1

χk(rk, ω) · S0(ri, rk, ω) · S(rk, rj , ω) , (6)

where the entire SOW volume has been divided into n meshes of volume Vi centered at ri,
(i = 1 . . . n), and

χk(ri, ω) = (n2
ow(ri, ω)− 1)Vi/4π (7)

is directly related to the value taken by the optical index at a given position ri inside the optical
waveguide. As an alternative to solving eq. (6) with a standard linear algebra procedure, we
apply the iterative procedure described in [18], which allows to handle very large discretized
systems accurately. From eq. (2), we can then compute both the electric and magnetic fields,
E(r, ω) and B(r, ω), transmitted in the third medium (cf. fig. 1). The time-averaged Poynting
vector field is then defined by

P(r) =
1

2
<{E(r, ω) ∧ B∗(r, ω)} . (8)

Finally, from the information contained in eq. (8), we are able to define a transmission
coefficient characterizing the optical transparence of the SOW. This quantity will be normalized
with respect to the incident energy Einc crossing a surface Σ located inside the input medium
and centered around the SOW (cf. fig. 1 and inset of fig. 2):

T (L0, θ0, λ) =

∫
Σ
P(l, L0 + ZΣ) · uzdl

Einc
, (9)

where ZΣ defined the location of the surface Σ in the output medium of the SOW, l = (x, y)
and uz is a unit vector directed along the OZ-axis. In the following, we will apply this relation
to perform a comparative analysis of two kinds of SOW, namely, homogeneous and periodically
structured SOWs. In order to ensure a good convergence of the method, the mesh size used
in the numerical works is ∆x = ∆y = ∆z = 30 nm.
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Fig. 3. – (A) Same as fig. 2, but with a SOW structured with a periodic optical index modulation
(σ = 240 nm). Around the solid curve (p-polarized mode) two working points (a) and (b) have been
introduced to label regions of both weak and strong optical transparences. (B) Evolution of the second
tunnel photonic band as a function of the SOW diameter σ.

Fig. 4. – Planar projection of the time-averaged Poynting P(x, y = cst, z) vector in a (XOZ)-plane
cutting the SOW center. (a) λ = 475 nm; (b) λ = 640 nm (see working points (a) and (b) defined in
fig. 3A).

i) Homogeneous SOW (cf. fig. 2)

For this first application the function now(r) will be kept at the constant value 1.5 inside all
the optical waveguide (this value is identical to the optical index of the two dielectric slabs
connecting the SOW). For a typical SOW length L0 = 2.88 µm, the two curves in fig. 2
clearly evidence the dramatic decay of the transmission coefficient vs. the incident wavelength
when σ < λ. For example, around 640 nm and with a guide diameter constricted to 240 nm
(dashed curve), the coefficient T (L0, θ0, λ) falls down to 10−3. Although, optical guides with
similar cross-sections can sustain propagation modes with real k-wave vectors (located around
λ = 400 nm), they are not significantly excited when the guide is coupled by total internal
reflection. Actually, the precise location of these modes would require an accurate calculation
of the local density of photonic states.

ii) Periodically structured SOW (cf. figs. 3 and 4)

One of the main advantage of the formalism presented above lies in the fact that it can
handle complex inhomogeneous systems formed by N distinct subdomains. Consequently, in
our second application, we will use this opportunity to analyse similar transfer phenomena
with SOWs of similar cross-section but composed by an alternance of two different materials
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of optical indices n
(1)
ow and n

(2)
ow (see inset of fig. 3). In the present paper, all the numerical

applications have been performed with a pattern period of 440 nm and two optical indices

n
(1)
ow = 1.0 (air) and n

(2)
ow = 2.2 (dielectric). Differently from the dramatic decay of the

transmission coefficient observed at the exit of homogeneous SOWs (fig. 2), the curves of
fig. 3a (calculated for a cross-section σ = 240 nm) indicate a complete modification of the
SOW spectrum. Although an exponential envelope still controls the transmission coefficient in
the optical range, the opening of two tunnel photonic bands in the SOW enhance the photonic
transfer efficiency around λa = 425 nm and λb = 640 nm, respectively. These two energy
bands are generated by the localized states associated with the seven material structures that
compose the SOW. They are broaden by the local surroundings and separated by an energy gap
centered around the wavelength λgap = 475 nm. To complete this information, fig. 4 displays
a map of the energy flow passing through the device for two typical wavelength values. In (a),
when the working point is chosen in the gap, no significant energy transfer can be expected (see
label (a) in fig. 3A). In (b), the efficiency increases drastically if the working point is translated
towards the center of the second photonic band (see label (b) in fig. 3A).

In the visible range, these tunnel photonic bands considerably enhance the transfer pro-
cess even for SOW with smaller transverse sizes (cf. fig. 3B). For example, the solid curve
(calculated for σ = 200 nm) reveals an enhancement around the second peak of about three

magnitude orders when passing from a homogeneous SOW (dashed curve of fig. 2) to an n
(1)
ow

periodically structured one. Finally, we note that for the optical-index variation considered in

this application (∆n = n
(2)
ow − n

(1)
ow = 1.2), the extinction of the second peak only occurs for

SOW diameters smaller that 160 nm (i.e. when σ < λ/4).
In conclusion, optical tunneling effects through subwavelength optical waveguides can be

enhanced by an appropriate structuration of the guide index. Even under total internal
reflection efficient transfer channels can be created. This effect can be exploited to perform
usually forbidden photonic transfer between two arbitrary transparent media linked by a SOW.
Independently of the fundamental interest of such a transfer mode involving high densities of
evanescent waves, exploitation and optimization of such a concept could lead to the realization
of interesting subwavelength optical devices that could be integrated in planar geometry.
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