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Abstract. – We discuss the force-velocity relations obtained in a two-state crossbridge model
for molecular motors. They can be calculated analytically in two limiting cases: for a large
number and for one pair of motors. The effect of the strain-dependent detachment rate on the
motor characteristics is studied. It can lead to linear, myosin-like, kinesin-like and anomalous
curves. In particular, we specify the conditions under which oscillatory behavior may be found.

Understanding the molecular mechanism underlying biological motors has recently attracted
increasing interest in biology as well as in physics [1]. Motor proteins such as myosin,
kinesin and dynein moving along molecular tracks are involved in a wide range of processes
essential for life, e.g., cell division, muscle contraction, and intracellular transport of organelles.
For many decades exclusively data from physiological measurements on muscles [2] provided
experimental information for modeling molecular motors [3, 4]. In recent years, a variety of
in vitro techniques allowed the observation of single motor proteins [5] and gave new insights
into the basic principles underlying their operation. Not only new theoretical models for
single-molecule motors [6-9] were inspired by these experiments, but also new models for
cooperative motors [10,11].

The theoretical models can follow two different goals. Either they are designed to fit as
many physiological experiments as possible by including many (up to six) different states,
or one uses simplified models (mostly with two states: attached and detached) in order to
extract the generic features of motion generation and classify the motors according to their
properties [10, 11]. Latter models fall into two classes, one using a specific conformational
change (power stroke) in the motor molecule [10], the other a ratchet mechanism [12, 11].
A striking result of the ratchet models was the prediction of spontaneous oscillations of
cooperative motors [13], which might explain the oscillatory behavior of muscles [14].
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Fig. 1. – Schematic model for the motor heads running along a molecular track.

Here we discuss the force-velocity relations of a two-state power-stroke model with strain-
dependent detachment rates. Depending on the functional form of these rates, the model can
show a much greater variety of phenomena than previously discussed [3, 10]. These include
linear, hyperbolic, anomalous or kinesin-like force-velocity relations. In the two-state model
each motor molecule has two long-living states: attached and detached. This corresponds to
the model described by Leibler and Huse [10] when only the time limiting steps important for
mechanical properties are taken into account. Two-state models have also been used previously
for myosin [3] and kinesin [7,8] as well as in ratchet models [11,15]. We generalize the two-state
model by introducing arbitrarily strain-dependent transition rates and discrete binding sites.
Both extensions are crucial for a qualitative and quantitative explanation of experiments.

The model is defined as follows. N motors are positioned with their roots on a stiff backbone
(the effects of an elastic backbone have been studied in [16]) and can attach to the molecular
track (actin or tubulin) as shown in fig. 1. Let xh denote the position of a (free or bound) head
and xm the position of its root at the backbone. x = xh − xm then denotes the strain on a
head. Deformations of a head can be described in terms of a harmonic potential H = U(x−xd)
with U(x) ≡ 1

2kmx
2. After attaching to or detaching from the track, a conformational change

in the head, described by shifting the potential by the distance dm, takes place, i.e. xd = 0
in the attached (A) state and xd = dm in the detached (D) state. This is the first spatial
asymmetry in our model and constitutes the basic mechanism for the generation of directed
motion. We assume that the transitions between the two states occur stochastically with
characteristic times ta and td. We assume that the overall attachment rate t−1

d of a free head
is constant, but its distribution to the single binding sites proportional to their Boltzmann
weights Wi ∝ exp[−βU(ia− xm − dm)], where a denotes the separation between the binding
sites (a = 5.5 nm on actin and 8 nm on tubulin [17]) [18]. The normalization reads

∑
iWi = 1.

Such behavior can be expected for example if some reaction has to take place before a free head
comes into the affine state, which then quickly attaches to the track. The same assumption
has also been used in [8] and in a slightly modified way in [7]. However, other scenarios which
include a position-dependent attachment rate are conceivable as well [3,19]. An experimental
estimate for the amplitude of thermal fluctuations of a free myosin head with data from ref. [20]
(km = 0.4 pN/nm, dm = 10 nm) gives σ =

√
kBT/km ≈ 0.3 dm. While we assumed a constant

attachment rate t−1
d , there is strong experimental evidence [21, 22] for a strain-dependent

detachment rate t−1
a of myosin.

We will show that different functions ta(x) describing strain-dependence of the detachment
rate lead to various interesting phenomena, which are the main topic of our discussion. In
generally ta(x) will be an asymmetric function, thus bringing a second asymmetry into the
model. The duty ratio (the fraction of time a motor spends in the attached state) [23] is given
as η(v = 0) = ta(dm)/(ta(dm) + td) at zero velocity.

We start our analysis by considering a large group of N rigidly coupled independent motors,
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Fig. 2. – a) Examples of a normal and an anomalous F -v relation, leading to oscillating behavior.
b) A graphical representation of the criterion for the occurrence of oscillations. If the tangent to the
detachment rate as a function of x/dm in the point 1 crosses the x-axis on the right of the point
given by the duty ratio at zero velocity η(0), the force-velocity relation is anomalous with a hysteresis
around v = 0.

a situation typical for the actin-myosin motor in muscles. Then the velocity fluctuations
resulting from the stochastic operation of single motors can be neglected. We set up a Master
equation for the probability density Φa(x, t) for a motor being attached with strain x at time
t and probability Φd(t) for a motor being detached. We also need the probability density
P (x, xm) that a motor at xm attaches with strain x on it. This will in general depend on
the actual position of the motor head xm with respect to the binding sites (xi = ia), which
is again correlated with the detachment positions. However, this correlation vanishes either
for a strain-independent detachment rate or if the motors have a low duty ratio (they spend
most of the time in the detached state), which is the case for myosin [24]. In this case we can

replace P (x, xm) ≡
∑
iWiδ(x+ xm − ia) by its average P (x) =

∫ (i0+1)a

i0a
dxmP (x, xm)/a

P (x) =
1

a

e−βU(x−dm)∑
j e
−βU(x−dm+ja)

, (1)

which is always normalized to 1. The probability Φd and probability density Φa obey the
following Master equations:

(∂t − v∂x) Φa(x, t) =
Φd(t)

td
P (x)−

Φa(x, t)

ta(x)
, ∂tΦd(t) = −

Φd(t)

td
+

∫ ∞
−∞

dx
Φa(x, t)

ta(x)
, (2)

with normalization Φd(t) +
∫∞
−∞Φa(x, t)dx = N . The force produced by the group of motors

is given by F (t) =
∫∞
−∞ dxΦa(x, t)∂xU(x).

For a constant positive velocity we have to find stationary solutions of eq. (2):

Φa(x) =
N
∫∞
−∞ dy G(x, y)P (y)

vtd +
∫∞
−∞ dx′

∫∞
−∞ dy G(x′, y)P (y)

, G(x, y) = exp

[
−

∫ y

x

dx′

vta(x′)

]
θ(y − x) . (3)

G(x, y) is a Green’s function which can be interpreted as the probability that a motor which
got bound to the track with strain y still remains bound when its strain reaches x.

For a harmonic potential U(x) and a strain-independent detachment rate (ta(x) ≡ ta) one
always gets a linear force-velocity relation F/N = takm(dm−vta)/(ta+ td). It neither depends
on temperature nor on the distance between the binding sites. More complex functions ta(x)
of course lead to other forms of the force-velocity relations. They can be classified into two
groups: the normal ones with a monotonously decreasing force for an increasing velocity
and the anomalous ones, showing hysteretic behavior (fig. 2a)). The reason why anomalous
relations are interesting is that they allow two different velocities for the same external force.
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For instance, in a harmonic external potential this leads to spontaneous oscillations if the
hysteresis spreads over v = 0. Such oscillations were first proposed in a two-state ratchet
model by Jülicher and Prost [13,11]. Here we show how such a mechanism can be implemented
in crossbridge model.

Upon neglecting the discreteness of the binding sites and thermal fluctuations, a simple
sufficient algebraic criterion for the occurrence of these oscillations can be derived. The
zero-velocity point certainly lies in a hysteretic range if the slope of the force-velocity relation
is positive there. Due to the simplification mentioned above, we set P (y) = δ(y−dm) in eq. (3)
and calculate the derivative

dF

dv

∣∣∣∣
v=0

= N
kmt

2
a(dm)

td + ta(dm)

(
−1 +

td

td + ta(dm)
dmta(dm)

d

dx
t−1
a (x)

∣∣
x=dm

)
. (4)

If its value is positive, the force-velocity relation certainly shows anomalous behavior. A
graphical representation of this criterion is shown in fig. 2.

The force-velocity relation as calculated by now describes the mean force a group of motors
produces when moving with a given constant velocity. However, the situation is usually
reversed and one is interested in the mean velocity at a constant force. Of course, both
situations are equivalent in the limit of large N . But for a finite N the motion actually occurs
stepwise. This raises the question, how the motors remember on which limb of the hysteresis
they currently move. The quantity that actually distinguishes between both limbs is the
number of currently attached motors. Together with the external force it uniquely defines the
velocity. This follows from the fact that the force per attached motor decreases monotonously
with increasing velocity (fig. 3), as can be seen from eq. (3). In a finite system the number of
motors fluctuates and if it passes a threshold value the velocity jumps from one stable state
into the other. The probability for such jumps is highest if the original state is close to the
edge of the hysteresis and the number of motors low.

An example of a function always leading to a normal F -v relation is ta(x) = exp[αx]. It
states that the lifetime of the attached state is larger for those heads that have just gone
through the power stroke and produce maximum force than for those which have already done
their work and now pull backwards. This idea has already been used by A. F. Huxley [3].
Such a dependence is needed for an explanation of the approximately hyperbolic force-velocity
dependence in muscle systems. Physiological data by Hill [2] are perfectly fitted within the
above analytic results by choosing αdm = 0.55 and td � t0a. Quantized binding sites and
thermal fluctuations are found to play only a minor role (their neglect leads to almost the
same curve with αdm = 0.58).

A function that can lead to an anomalous F -v relation is ta(x) ∝ exp[−2 |x| /dm], as shown
in fig. 3. For a sufficiently low duty ratio η(0) the point v = 0 lies within a hysteresis and is
unstable if the force is held constant. Instead, a positive finite solution is possible or a negative
with v → −∞. To obtain the latter from our equations, an infinitesimally small friction term
has to be added. Now if one lets such a group pull against a harmonic spring with the other
end fixed, the extension of the spring oscillates in a sawtooth-like manner with flat ascending
slopes (motors working against the spring force) and very steep descending slopes (the spring
force pulling motors backwards). Very similar behavior has been observed in muscles under
some conditions [14].

So far, our discussion has focused on situations where motors are operating in large groups.
There is, however, a second scenario, where only a few molecular motors cooperate at a time,
e.g., when kinesin transports vesicles along microtubules. Modeling them is guided by the
following experimental observations: A kinesin molecule with two heads can move over long
distances without detaching from the microtubule [25]. Although it is not yet completely clear
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Fig. 3. – An example of the F -v curve for ta(x) ∝ exp[−2 |x| /dm] and a low duty ratio. The solid line
shows the mean force motors would produce at a given velocity. The dot-dashed line shows the mean
number of attached motors and the dashed one the mean force per attached motor. Seeking for the
velocity at a given force one obtains a stable (higher v) and an unstable (lower v) solution. A third
solution is always v → −∞, but to obtain it one has to include an infinitesimally small friction term.

Fig. 4. – Force-velocity curves for kinesin. Experimental data from ref. [25] at saturating ATP
concentration and the theoretical curve for α = 0.5 nm−1, td = 3 ms, t0a = 700 ms, dm = 4 nm
and km = 1.1 pN/nm. The middle curve shows the result for one double-headed molecule, the upper
one for many coupled double-headed molecules and the lower one for many single-headed molecules.
These two curves were obtained from a Monte Carlo simulation since the assumptions leading to
eq. (1) are not valid any more.

how the two kinesin heads “walk” along the protofilaments [26], there are good arguments to
use a model with 8 nm periodicity [27] where each binding site can be occupied only with one
head at a time. Single-headed kinesin can move microtubules if cooperating in larger groups,
but not as fast as double-headed [28]. The velocity decreases with increasing load almost
linearly [25, 29]. Above the stall force kinesin shows back-and-forth movement, but does not
walk backwards [30]. Forward loads can increase the velocity many times [30].

From the fluctuation analysis [31,32] it is quite certain that both the process of attachment
and of detachment include an asymmetry between the forward and the backward direction
(a new head attaches in front of the other one and the rear head detaches more probably
than the front one). The low variance [33] (r ≈ 0.5) is not a priori inconsistent with a model
where only one of both symmetries is present (one where steps with 8 nm and 0 nm occur
with equal probabilities), but then everything else in the duty cycle including the dwell times
would have to be completely deterministic, which does not seem realistic. The behavior at
superstall forces [30] additionally implies that one of both these asymmetries remains over the
whole force range, while the other one reverses at higher forces. In our discussion we restrict
ourselves to a model in which the attachment asymmetry gets reversed with increasing load
while the detachment asymmetry remains. This approach has already been used by Peskin
and Oster [7] and in a similar way by Duke and Leibler [8]. This, however, does not mean that
we consider the other case less realistic.

The central result is again the force-velocity relation. Because the velocity is not temporally
constant as for N → ∞, it has to be calculated directly from transition rates for a constant
force. Since an attachment two sites away from the other head is very unprobable, we take
only the attachment rate at the front (f) or rear (r) side of the other head into account:
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R
f/r
a = N exp[±βkma(dm − F/km)/2]; N is chosen such that both rates add up to t−1

d . The

respective detachment rates are R
f/r
d = t−1

a ((±a+ F/km)/2). This gives

v(F ) =
a/2

td + 1/(Rf
d +Rr

d)

(
Rr
d −R

f
d

Rr
d +Rf

d

+
Rf
a −R

r
a

Rf
a +Rr

a

)
. (5)

The linear force-velocity curve has led some authors [26, 25] to the conclusion that there is
no strain-dependence of the detachment rates. This conclusion, however, is only valid in a
model with continuous binding sites [10]. Taking into account discrete binding sites actually
leads to a nonlinear, S-shaped curve if the detachment rates are strain-independent. Again
the simplest choice is ta(x) = exp[αx]. Using a reasonable set of parameters the model is able
to reproduce the nearly linear dependence reported in refs. [25, 29] (fig. 4) with extensions
similar to those in ref. [30]. Figure 4 further shows the velocity for a large number of coupled
double-headed and single-headed kinesin molecules. When comparing them to experiments
care has to be taken since the pairs are in reality coupled elastically to the backbone, which
leads to lower velocities. Beside that both curves depend very sensitively on the choice of
ta(x). Nevertheless, they show clearly that the “repulsion” between heads already causes a
significant velocity difference between single- and double-headed kinesin.

Another quantity of interest is the probability for the whole molecule detaching from the
microtubule during one step, i.e. PL = td/ta(F/km), yielding 5% at zero load and saturating
ATP concentration, somewhat higher than comparable observations (1.3%) [28].

In summary, we have shown that a generalized two-state crossbridge model for molecular
motors can lead to a much larger variety of phenomena than previously discussed. We have
found analytical results in two limiting cases: for a large number of rigidly coupled motors and
for one pair. In the first case we show how different functions describing the strain-dependence
of the detachment rate result in linear, hyperbolic or even anomalous force-velocity relations
and give a simple algebraic criterion for the latter. Discrete binding sites play only a minor
role. For one pair of motors force-velocity relations as measured on kinesin can be reproduced.
They depend crucially on the displacement between the binding sites. The model also shows a
significant difference between single- and double-headed kinesin when operating in large grups.
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