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Abstract. – A population of globally coupled logistic maps with inhomogeneous coupling is
numerically studied. It is shown that when the coupling intensities take large values with
relatively small dispersion the system is entrained in fully synchronous motion. When synchro-
nization is unstable, instead, a regime with complex correlation between the dynamics of each
map and its coupling intensity is observed. Self-averaging of internal fluctuations holds in this
system for small population sizes, whereas it breaks down when the population grows.

It has been pointed out that global interactions between active elements can play a leading
role in governing the dynamics of a wide class of natural systems [1], that range from surface
catalytic reactions [2] to neural networks [3] and biological populations [4]. This has recently
motivated rather intensive investigation of globally coupled ensembles of dynamical systems.
For instance, a widely studied form of global coupling between N identical discrete-time
mappings whose individual dynamics is given by x(t + 1) = F[x(t)] is [5]

xi(t+ 1) = (1− ε)F[xi(t)] +
ε

N

N∑
j=1

F[xj(t)] , (1)

where ε (0 ≤ ε ≤ 1) measures the strength of coupling and i = 1, 2, . . . , N labels the elements
in the ensemble. In this form of global coupling, as ε grows, the individual dynamics is
gradually replaced by the global average 〈F〉 = N−1

∑
j F(xj). For ε = 1, the ensemble is

fully synchronized after the first time step, and from then on all the elements have identical
evolution. Full synchronization is in fact linearly stable for ε > 1 − exp[−λmax], where λmax

is the maximum Lyapunov exponent of the mapping that defines the individual dynamics [6].
At lower values of the coupling intensity, partial synchronization —typically, in the form of
clustering [5, 7]— can be observed.

From a realistic viewpoint, however, it is unlikely to find a globally coupled system whose
elements are strictly identical. Some attention has therefore been paid to inhomogeneous
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ensembles [1, 8], where the elements differ in the value of one or more parameters of their
individual dynamics, which are distributed over prescribed probability densities. A different
kind of inhomogeneity, that could plausibly appear in realistic models, would take into account
that the coupling intensity is not the same for all the elements. It could be reasonable to
suppose that, although still interacting through global averages, each element is affected with
different strength by the ensemble. This should apply in particular to biological populations:
the possibility of introducing inhomogeneities in coupling intensities has already been quali-
tatively discussed in connection with a sociological problem [9]. In this letter, the dynamics
of an ensemble of N globally coupled logistic maps with inhomogeneous coupling intensities is
studied. Consider the system of coupled mappings

xi(t+ 1) = (1− εi)f [xi(t)] + εi〈f(t)〉, i = 1, . . . , N , (2)

with f(x) = 4x(1 − x) —which corresponds to the extreme chaotic regime of the logistic
map— and 〈f(t)〉 = N−1

∑
j f [xj(t)]. The coupling intensities εi are chosen at random from a

probability distribution P (ε), with 0 ≤ ε ≤ 1. In [10], some preliminary results on system (2)
have been presented for the case where ε is uniformly distributed between two given values.
Here, instead, P (ε) is taken to be a truncated Gaussian function:

P (ε) = N


exp[−(ε− ε0)2/2σ2], for 0 ≤ ε ≤ 1,

0, otherwise,

(3)

where N is a suitable normalization constant. If considered in the whole real domain −∞ <
ε < +∞, this distribution has mean value ε0 —that will be here restricted to the interval
0 ≤ ε0 ≤ 1— and mean square dispersion σ. The case of homogeneous coupling is recovered
for σ = 0. In this limit, since the Lyapunov exponent of the logistic map in eq. (2) is λ = ln 2,
full synchronization is linearly stable for ε > 1/2.

For σ 6= 0, the coupling intensities chosen from the distribution (3) are spread around
ε0. From eq. (2) it is clear that full synchronization, in which xi(t) = xj(t) ∀ i, j and t,
is a possible state for the inhomogeneous population. As in the homogeneous case, if the
fully synchronized state is reached, each element follows the behaviour of a single, uncoupled
mapping. It can be expected that, for each value of σ, there is a minimum critical value of ε0
above which full synchronization is stable. This critical value has here been determined through
numerical simulations in a population of N = 104 elements [11]. At each selected point (ε0, σ),
the coupled population has been left to evolve from a random initial condition and, after a
maximum of 104 temporal steps, it has been tested whether the fully synchronized state was
reached. A polynomial interpolation of the boundary of the zone where full synchronization
is observed is shown as a line in fig. 1. Full syncronization occurs in the zone of small σ and
large ε0.

Performing a linear stability analysis of the fully synchronized state is not a simple task. It
involves the diagonalization of a random matrix with strong correlations between its elements.
A weaker condition for stability can however be easily stated: if the coupling intensity of at
least one element i in the population is εi < 1/2, full synchronization is unstable. A possible
criterion to define the stability region in the (ε0, σ)-plane is therefore the following. If the
values of ε0 and σ are such that the expected number of elements with εi < 1/2 is greater than
unity, full synchronization is unstable. Within this criterion, the boundary of the stability
region is given by the identity

N−1 =

∫ 1/2

0

P (ε) dε , (4)
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Fig. 1. – The region of full synchronization in the (ε0, σ)-plane, calculated from numerical simulations
(full line) and from eq. (4) (dots).

Fig. 2. – Snapshot of the population in the (xi, εi)-plane, for ε0 = 0.3 and σ = 0.5. The dashed line is
a 100-column histogram of the projection over the horizontal axis. The histogram is normalized such
that its maximum equals unity.

where P (ε) depends parametrically on ε0 and σ. Dots in fig. 1 stand for the values of these
parameters that satisfy eq. (4) for N = 104. These results show that the approximation (4)
is a reasonable one. Note however that the above criterion depends on N and approaches
a trivial limit for N → ∞, whereas the region of full synchronization is expected to be well
defined in that limit.

In a homogeneous population of coupled maps, the state of full synchronization is preceded
—as the coupling intensity increases— by a regime of clustering [5, 7]. In this regime, the
population is spontaneously divided into groups of elements with identical evolution. It
can be seen, from eq. (2), that such kind of clustering is not possible in an inhomogeneous
population. For this system, a different form of collective evolution is observed outside the
region of full synchronization. The dashed line in fig. 2 shows a histogram of the distribution of
105 elements in the coordinate space at a given time, for ε0 = 0.3 and σ = 0.5. Evidently, this
distribution is highly inhomogeneous, with sharp spikes of different heights at several points.
Note, however, that it differs from a strictly clustered distribution, typical of homogeneous
populations, where the histogram consists of several isolated peaks [7]. At each time step —as
the system evolves— the histogram changes, but it preserves its strongly peaked profile. This
state of partial synchronization is therefore characterized by the appearence of correlations in
the form of accumulation of elements in certain regions of the coordinate space.

The underlying complexity of the partially synchronized state is fully revealed when analyz-
ing the correlation between the coordinate xi of each element i and the corresponding value of
the coupling intensity εi. This non-trivial correlation had been preliminary reported in [10] for
a uniform coupling distribution. Dots in fig. 2 show the coupling intensity of each element vs.
its coordinate. Surprisingly enough, this plot resembles strongly the bifurcation diagram of
the logistic map. A closer look, in fact, shows that it exhibits self-similar properties, although
some features differ from those observed in period-doubling bifurcations. For instance, some
branches are discontinuous and, around certain values of εi (as for εi ≈ 0.22), both disordered
regions (0.2 < xi < 0.7) and ordered distributions (xi ≈ 0.85) are observed. As in the case
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Fig. 3. – Bifurcation diagram for the average 〈f〉 as a function of ε0 for σ = 0.3.

Fig. 4. – Phase diagram in the (ε0, σ)-plane, indicating the regions of different behaviour of 〈f〉. Zones
labeled with n correspond to period-n cycles, whereas nb indicates chaotic motion in n bands. The
dark zone is the region of full synchronization. The horizontal line stands for the points where the
data in fig. 3 was obtained. The dot in the period-4 zone corresponds to fig. 2.

of the histogram, this distribution changes as time goes on, but its topological features are
preserved during the evolution.

Self-similar features in the εi vs. xi plot of fig. 2 imply a complex, hierarchical distribution
of elements in the coordinate space. For large values of εi, a regular distribution is observed.
Elements with similar coupling intensities are neighbours in space. When a bifurcation occurs
for a given value of ε, the population with slightly higher coupling intensities splits into two
groups, which separate from each other as εi grows. Eventually, a disordered regime is reached,
where elements with similar values of ε occupy relatively large regions. Around a given value
of xi, regular and disordered regimes can occur simultaneously. Near xi = 0.35, for instance,
four clearly distinct groups are present. Three of them —with low coupling intensities— are
disordered, whereas the fourth —with relatively large values of εi— is regular.

It is worthwhile to note that disordered distributions, where elements with similar εi are
widely spread in the coordinate space, correspond to disordered (seemingly chaotic) evolution
of the individual elements. On the other hand, as explained below, regular distributions —such
as for large εi— correspond to regular (but noisy) dynamics.

In order to provide an explanation for the complex behaviour exhibited by the present
system, eq. (2) can be reinterpreted as an autonomous mapping for a single element with
effective dynamics xi(t + 1) = feff [xi(t)] under the action of an external additive forcing
εi〈f(t)〉. The effective individual dynamics is given by a logistic map with a modified constant,
feff(xi) = rixi(1 − xi) with ri = 4(1 − εi). Regarding the “external” forcing, of course,
its dynamics is a collective property of the ensemble and depends therefore on the state of
each element. There follows a well-defined average evolution with fluctuations originated
inside the system, due to the large number of degrees of freedom in the population. From a
phenomenological point of view, however, it enters the individual dynamics as an independent
term, whose average evolution and fluctuations can be considered to be fixed from outside the
single-element system. Within this picture, thus, the evolution of a single element results from
the combined effect of the effective individual dynamics —which has the well-known logistic
behaviour— and the external noisy forcing. It is therefore necessary to characterize now the
dynamics of the external forcing and, in particular, of the average 〈f(t)〉.
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Figure 3 shows the bifurcation diagram of 〈f〉 as a function of ε0, for σ = 0.3 and N = 104.
It has been constructed by letting the system evolve, for each value of ε0, during a transient
of 103 time steps and then recording the next 10 values of 〈f〉. At the end of this transient,
both the average evolution and the internal noise have already attained a stationary regime.
The step length in ε0 is ∆ε0 = 3× 10−3. For ε0 = 0, 〈f(t)〉 is engaged in a cycle of period 2,
with moderate fluctuations generated as explained above. For ε0 ≈ 0.2 the cycle bifurcates
to a period-4 orbit. Note that this bifurcation differs qualitatively from those observed in the
logistic map. This suggests that the evolution of 〈f〉 does not belong to the universality class
of quadratic mappings. Higher-order bifurcations are suppresed by noise. For larger ε0, thus,
the bifurcation diagram shows a chaotic zone with four bands which merge into two bands
and, eventually, into a single band for ε0 ≈ 0.5. This regime persists up to ε0 = 1, except for
a wide stability window (0.7 . ε0 . 0.87), where 〈f〉 displays a noisy cycle of period 3.

The kind of bifurcation diagrams exhibited by 〈f〉 as a function of ε0 for other values of
σ is similar to that of fig. 3. Typically, a cascade of noisy bifurcations leads to a chaotic
zone where a period-3 window may appear. All these bifurcations are of the same type as
shown in fig. 3 for ε0 ≈ 0.2, namely, they do not show the characteristic pitchfork shape
of bifurcations in quadratic maps. Figure 4 shows an approximate phase diagram for the
behaviour of 〈f〉, extracted from simulations of an ensemble of 104 elements. In the zones
marked with the label n, 〈f〉 evolves in a noisy cycle of period n, whereas in the zones marked
with nb it evolves in chaotic orbits that visit n bands alternately. The boundaries between
zones have been approximated by polynomial fitting of the numerical data. These show
considerable dispersion, especially, in the boundaries separating regular and chaotic evolution,
where noise suppresses the intermediate bifurcations. The dark region in fig. 4 is the zone of
full synchronization, which —since the synchronized population is driven by the logistic map
in the extreme chaotic limit— corresponds to chaotic evolution in a single band. Note the
wide period-3 window immersed in the 1b zone. The horizontal line in this plot stands for the
points where the bifurcation diagram of fig. 3 was calculated, whereas the dot in the region of
period 4 corresponds to the parameters of fig. 2.

The phase diagram of fig. 4 shows that, for the parameter set of fig. 2, 〈f(t)〉 in engaged
in a period-4 orbit. In order to reobtain fig. 2 in the frame of the single-element picture
proposed above, the temporal average 〈f〉 and the mean dispersion δ〈f〉 of each one of the
four successive values of 〈f(t)〉 have been measured. Then, a single element with the logistic
dynamics given by feff , subject to a noisy period-4 external forcing constructed with those
measured parameters, has been left to evolve from a randomly chosen initial condition. For
different values of εi and appropriately choosing the time at which the state of the element is
measured —namely, always with the same phase with respect to the periodic forcing— fig. 2
is in fact accurately reproduced. This supports applying the dynamical representation of an
individual element in the coupled population as an effective map driven by an external force.
Within this picture, a phenomenon such as the coexistence of regular and chaotic motion for
a given value of the coupling intensity εi —as observed in fig. 2 near εi = 0.22— can be
readily explained. In fact, the possibility of obtaining both types of motion from different
initial conditions at fixed values of the parameters that control the evolution is a well-known
property of dynamical systems subject to periodic forcing [12].

It should be expected that certain details in the phase diagram of fig. 4 depend on the
number of elements in the population. Indeed, as mentioned above, the suppression of
higher-order periodic motion in 〈f(t)〉 —as well as the absence of higher-order periodicity
windows in the chaotic region— are to be ascribed to the noise generated by the population
itself. This results in random-like fluctuations in 〈f〉, that could be supposed to self-average as
the number N of elements in the population grows. It has been however shown [13] that,
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Fig. 5. – Size dependence of the fluctuations in 〈f〉 for ε0 = 0.3 and σ = 0.5. The straight line in this
log-log plot has slope −1/2.

in large populations of globally coupled identical dynamical elements, self-averaging does
not occur at the same rate as in ensembles of independent elements. Namely, the law of
large numbers, δ〈f〉 ∼ N−1/2, breaks down in globally coupled populations. Fluctuations in
ensemble averages show in fact a much slower decrease as N grows. This remarkable feature
has been interpreted as an emerging property in the collective evolution of the population,
with origin in the long-range interactions between its components [13,14].

To test this property in eq. (2), the fluctuations δ〈f〉 have been measured for the largest
of the four values that 〈f(t)〉 visits in its period-4 cycle at ε0 = 0.3 and σ = 0.5. Results are
shown in fig. 5. In this plot, two regimes are clearly identified. For N . 3×104, the law of large
numbers, δ〈f〉 ∼ N−1/2, does hold. In the log-log plot of fig. 5, this has been emphasized by
drawing a straight line with slope −1/2 in the low-N range. Above this range, it is apparent
that the law of large numbers breaks down, and the fluctuations in 〈f〉 vary more slowly
with N . The presence of a relatively wide range where the law of large numbers holds can be
ascribed, in the present system, to an inherent random ingredient in the population, namely,
the values of the coupling intensities εi. This stochastic component seems to dominate the
fluctuations of the average 〈f〉 for small N . Since there is no correlation between the values
of εi for different elements, the effect of their random distribution verifies the law of large
numbers and self-averages then in the usual way. At a certain point, however, it becomes less
important than the fluctuations originated in the dynamics itself, which —as explained above—
are expected to vary with N in a relatively slow manner. This variation thus dominates in the
large-N regime.

In summary, it has been here shown that a population of globally coupled logistic maps
where the effect of coupling is heterogeneous, i.e., where each element has a different coupling
intensity, can perform fully synchronous motion —as observed in homogeneous populations—
when coupling intensities are distributed with large mean value and relatively small dispersion.
On the other hand, clustering is not possible here. Synchronization is instead replaced by a
regime where the elements display a complex dynamical distribution in the coordinate space,
exhibiting a highly non-trivial correlation with their coupling intensities. This correlation,
which had already been preliminary reported for coupled logistic maps with a uniform coupling
distribution [10], is probably a distinctive feature of inhomogeneous populations of globally
coupled dynamical systems. In this sense, it would be interesting to detect its occurrence in
ensembles where the dynamical elements differ from each other and are globally coupled in a
homogeneous way [1,7, 8].
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The observed correlation between the spatial distribution and the coupling intensities can
be explained by interpreting the dynamics of each element as the combined effect of an effective
autonomous evolution and an “external” fluctuating force, which is actually generated inside
the system. The dynamics of this “external” force also displays complex features, such as
bifurcations and chaos, to which the internal noise originated in the population is superposed.
For small populations, these fluctuations self-average as predicted by the law of large numbers
—presumably due to the dominant effect of the random distribution of coupling intensities.
This has also been observed in globally coupled ensembles with slightly different elements or
subject to external noise [15]. For large populations, instead, emerging collective properties
in the dynamics make that law break down and fluctuations result to be more persistent
as the number of elements grows. It could be expected that at least a part of the features
summarized above are generically found in populations of dynamical elements —different from
logistic maps— when coupling is inhomogeneous. This is the subject of work in progress.
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