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ENSERG - 23, rue des Martyrs, 38016 Grenoble France

(received 29 September 1998; accepted in final form 10 March 1999)

PACS. 71.30+h – Metal-insulator transitions and other electronic transitions.
PACS. 71.10Ca – Electron gas, Fermi gas.
PACS. 71.55−i – Impurity and defect levels.

Abstract. – By including the contribution of a bound electron to the potential to be screened,
it is shown that the screening cloud around a Coulomb charge is repelled so as to enable the
formation of a persistent localized state. This result is obtained either with Thomas-Fermi or
Lindhard screening, and is applied to the determination of Mott’s critical density.

Introduction. – The bound states induced by a test charge screened by an electron gas have
already been the subject of numerous papers. Their determination was primarily of interest in
the study of the Metal-Insulator Transition (MIT) (see, e.g., [1-4]). Screened potentials are also
known for exhibiting specific features such as Friedel oscillations, either in three-dimensional [5]
or two-dimensional systems [6]. More recently, some authors also investigated the possibility
of occurrence of a bound state in the attractive part of such oscillating potentials, either
attractive or repulsive [7]. In all the cases I am aware of, an important property of such bound
systems seems to have remained unnoticed: In contrast to the stationary states induced by an
unscreened potential, as, for instance, with a hydrogen atom in vacuum or an impurity in a
low-doped semiconductor, the potential felt by the trapped electron is not the same as the one
which exists in the absence of such an electron. In other words, the screening of the test charge
is also a function of the potential induced by the wave function of the bound particle. That
the localized electron tends to repel the screening cloud should indeed be a trivial remark.
But I wish to show that this may have major consequences, since this implies that the binding
energy is not the same, depending on whether an electron was present or not in the site before
switching on electron screening. Indeed, we shall see that even when the increase in electron
density is such that there is no longer an empty state, the binding energy of the occupied state
never vanishes. For the sake of clarity (and brevity), in this letter, I only intend to provide the
simplest comprehensive example of such a phenomenon, in a three-dimensional system. I have
therefore chosen to treat the case of an occupied bound state with a positive test charge, the
screening of which is accounted for by introducing either the Lindhard or the Thomas-Fermi
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(TF) dielectric function. Besides, I shall only be concerned with the ground state and I shall
not treat many-body effects as, e.g., in refs. [7,8], where the authors have put to good use the
local field correction approach. Nevertheless, I do not expect any of the qualitative conclusions
exposed in this letter to be caught out once such effects are taken into account.

Model. – The case of the empty site has been thoroughly studied in many papers and here
only the calculation details of the occupied case are given. Besides, I have already treated
in detail elsewhere the case of the TF approximation, with an emphasis put on scattering
phenomena [9]. I shall therefore focus on Lindhard screening, treated in reciprocal space. The
bound electron wave function is assumed to be hydrogenic. One might indeed make use of
improved variational forms (see, e.g., [8]), but for our purpose we do not require an extreme
accuracy. All formulae are in SI units and the Fourier transform ϕ(~q ) of a function ϕ(~r ) is
defined as ϕ(~q ) =

∫
ϕ(~r ) exp[−2iπ~q ~r ]d3~r. In q-space the total electrostatic potential to be

screened (fixed impurity V imp
bare(~q )+ bound electron V e

bare(~q )) has the same form as that of a
hydrogen atom in the ground 1s state [10]:

Vbare(~q ) =
−e

4κ

(
1

a2 + π2q2
+

a2

(a2 + π2q2)2

)
, (1)

where κ is the static dielectric constant of the medium and e is the electron charge. a is the
reciprocal Bohr radius of the bound electron. Screening is taken into account by dividing this
potential by the Lindhard dielectric function [11]:

ε(~q ) = 1 +
kF

π3a0q2

(
1

2
+
k2

F − π
2q2

4πkFq
ln

∣∣∣∣πq + kF

πq − kF

∣∣∣∣) , (2)

where kF is the Fermi momentum and a0 is the unscreened Bohr radius. In real space, the
total potential V (~r ) (i.e. the inverse Fourier transform of Vbare(~q )/ε(~q )) exhibits Friedel
oscillations, as for a simple test charge, and using a theorem due to Lighthill [12], it can be
shown that the singularity in the derivative at kF/π gives rise to oscillations the asymptotic
form of which is

V (~r ) ∼=
2a2 + k2

F

(a2 + k2
F)2

ea0kF

4κ(1 + 2πa0kF)2

cos(2kFr)

r3
. (3)

In q-space, the potential felt by the bound electron is

Ve(~q ) =
Vbare(~q )

ε(~q )
− V e

bare(~q ) = V imp
bare(~q ) +

(
1

ε(~q )
− 1

)
Vbare(~q ) . (4)

With TF screening this potential can be expressed analytically in real space [9], but with
Lindhard screening it is much easier to solve the Schrödinger equation in q-space. The kinetic
energy part is 〈T 〉 = h̄2a2/2m, m being an effective mass, and the potential energy is [3]

〈We〉 =

∫
eVe(~q )G(~q )d3~q , (5)

where G(~q ), the Fourier transform of the electron wave function product ϕ(~r )ϕ∗(~r ), is given
by

G(~q ) =
a4

(a2 + π2q2)2
. (6)

Minimizing 〈T +We〉 can be easily achieved numerically, and one then obtains the dependence
of the binding energy Ebound and reciprocal Bohr radius on kF. This dependence has been
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Fig. 1 Fig. 2

Fig. 1. – Graph of the binding energy vs. the Fermi wave vector, both for Thomas-Fermi and Lindhard
screening. The two upper curves are for an occupied site, and the two lower ones are for an empty
site.

Fig. 2. – Graph of the difference in electron energy separating a screened occupied impurity from a
screened empty site.

plotted in fig. 1, both for Lindhard and TF screening. As is well known, the binding energy of
the empty state vanishes above a critical value of kF [2-4]. But fig. 1 also demonstrates that
there is always an occupied bound state, whatever is the free-electron concentration. Besides,
the binding energy in the occupied case tends to a limit which is about the same for both kinds
of screening, around 0.39 Ry. Obviously, the correct way of treating a number of problems
related to screened potentials, either theoretical or experimental, should be affected by such a
result. I shall end this letter by addressing one of them, which is the determination of Mott’s
critical density.

Going from the high-concentration range, Mott’s critical density nc is attained when an
electron gas cannot sustain itself because electron screening is lowered so as to enable the
formation of bound states. It is a widespread practice to consider only the empty case, and nc

is assumed to be the concentration at which the binding energy vanishes. However, it is clear
from fig. 1 that this is a priori not the correct way to assess nc. One should indeed determine
it as the value for which the total gain in electron energy brought by the impurity is the
same, both in the empty and occupied cases. We shall note these two energies as Wempty and
Woccupied. Firstly, I would like to point out that in both cases, exactly one negative elementary
charge is induced in the electron assembly by the positive point charge. In the occupied case,
there is indeed a deficit of free electrons close to the impurity, and a local positive charge is
formed from the fixed positive jellium; it is not difficult to show that the net screening charge
is equal to zero. One can calculate the total energy in each case by using the linear response
approach. In the empty case, the total energy is calculated pertrubatively from the energy
E(N + 1) of a system of (N + 1) electrons in which one withdraws an amount equal to one
elementary charge from the uniform positive background, and introduces the positive point
charge. In the occupied case, one calculates the perturbation induced by the system composed
of the point charge and the bound electron on an assembly of N free electrons with initial
energy E(N). In this last case, one must also add the quantized energy Ebound of the bound
electron to the energy perturbation brought to the electron gas. It is worth noting that the
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initial number of free electrons is N rather than N+1 in the occupied case, since in this scheme
the bound electron is considered as an entity distinct from the electron assembly. The energy
of the bound electron omitted, in both cases, the change in energy is the sum of the Coulomb
interaction between the screening cloud and the localized charge, and the electrostatic and
kinetic energies of the screening cloud. By virtue of the Hellman-Feynman theorem, it can be
demonstrated that the addition of all these three terms is indeed equal to half the interaction
energy of the screening cloud with the localized charge (point charge or point charge + bound
electron) [13,14]. Noting as ρempty

s (~q ) and ρoccupied
s (~q ) the screening charge distributions in the

empty and occupied cases, respectively, the difference ∆W = Woccupied −Wempty is therefore
given by

∆W =
1

2

∫
V

ρoccupied
s (~q )(V imp

bare(~q ) + V e
bare(~q ))d3~q −E(N + 1) +E(N)−

−
1

2

∫
V

ρempty
s (~q )V imp

bare(~q )d3~q +Ebound , (7)

which can be put in the form

∆W = 16π3eκ

∫ ∞
0

q4

(
1−

1

ε(~q )

)
V e

bare(~q )(V e
bare(~q )− 2V imp

bare(~q ))dq −

−E0

(
(kFa0)2 −

2

π
kFa0

)
+Ebound , (8)

by noting that the screening charge distributions can be replaced by the corresponding poten-
tials through the Poisson equation written in reciprocal space. The difference E(N+1)−E(N)
has been approximated by summing the kinetic and exchange terms [15]. E0 is equal to one
Rydberg.

In the Thomas-Fermi case, we directly calculate and sum all electrostatic and kinetic energy
terms, considering the screening cloud as a smooth and continuous distribution of charges
(mean-field approximation). The electrostatic terms have already been explicited in ref. [9,16].
The kinetic energy terms of the screening cloud which must be subtracted from one another
are of the form [14]

〈T 〉 =
3h̄2

40π2m

(
3

8π

) 2
3
∫ ((

ρs(~r )

e

) 5
3

− n
5
3

F

)
d3~r , (9)

where nF is the free-carrier density. ∆W has been numerically integrated and plotted in fig. 2.
A rather alarming feature arises both in the TF and Lindhard cases: from fig. 2 it is clear that
the configuration with the bound state is always energetically more favorable. In this scheme,
it therefore seems that stable screening cannot be ensured by a Fermi gas without electron
bonding to the positive test charge. I note that such a conclusion is in qualitative agreement
with much earlier and somewhat different considerations by Friedel [17]. When the empty

case is considered alone, it is well known that Mott’s transition occurs for n
1/3
c a0 = γ with

γ ∼= 0.36 or 0.4 for Thomas-Fermi or Lindhard screening, respectively [3] (experimentally,
the practical value is close to γ = 0.26 for many different materials [18]). It is now well
established that a correct modelling of the Metal-Insulator transition must involve the local
correlations between the electrons occupying the various impurity sites, using tight-binding
models of the Hubbard form [19]. The fact that the screening approach derived in this letter
does not predict a conducting phase clearly indicates that such a scheme can only be used
for giving an introductory and qualitative account of the transition. Coming back to more
recent work [7], it would certainly be interesting to see whether the conclusions developed by
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the authors still apply if they include the contribution of the bound electron to the potential
to be screened. It is also worth noticing that introducing the calculated dependence of a
on electron concentration in eq. (3) shows that the amplitude of the Friedel oscillations goes
through a maximum which precisely lies in the range of metallic densities. It would therefore
be interesting to check whether such a prediction might have some impact in real experimental
systems.
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