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PACS. 45.70Ht – Avalanches.
PACS. 83.70Fn – Granular solids.
PACS. 83.50Tq – Wave propagation, shocks, fracture, and crack healing.

Abstract. – The flow of granular matter such as sand is often characterized by the motion of
a thin superficial layer near the free surface, while the bulk of the solid remains immobile. A
pair of equations called the BCRE equations (Bouchaud J-P., Cates M. E., Ravi Prakash

J. and Edwards S. F. J. Phys. 4 (1994) 1383) have been proposed to model these flows and
account for the dynamic exchange of mass between moving and stationary grains using the
simplest kinematic considerations. We uncover a new conservation law for the BCRE equations
and its variants that unifies a variety of recent special solutions and show that these equations
support simple waves, and are capable of finite time singularities that correspond to propagating
erosion fronts.

The flow of sand in a hourglass, the ripples on a beach and the clogging of a grain hopper are
commonplace examples of our experience with particulate matter. The study of these materials
cuts across the traditional boundaries of solids, fluids and gases; the finite angle of repose of a
mound of sand is like that of a solid that preserves its shape, a snow avalanche is reminiscent of
a flowing fluid, and the motion of a sediment suspension is like that of a dilute gas. Theoretical
approaches to these problems at a macroscopic level use a combination of ideas from continuum
mechanics and phenomenology, and at a microscopic level use inelastic molecular dynamics
and statistical/kinetic approaches [1]. Of the phenomenological approaches, one model that
accounts for the flow of granular materials in a thin superficial layer in such phenomena as
avalanches [1] was first explicitly laid out in [2], although variants of these equations had been
proposed earlier [3].

In its simplest form, the model characterizes the dynamics of these free-surface flows in
terms of two dependent variables corresponding to the height Ĥ(x, t) of a solid-like immobile
phase and the effective height R(x, t) of a liquid-like mobile phase that is akin to a free-surface
shear band sliding on top of the solid-like phase. It is most convenient to think of the
height H(x, t) of immobile grains relative to a sandpile resting at the angle of repose so that

H(x, t) = Ĥ(x, t)−x tan θ, where θ is the angle of repose. Although the original equations also
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included random forcing terms, we will deal with the deterministic equations in this paper.
Then the so-called BCRE equations [2] are given by

Ht = −γRHx ,

Rt − vRx = γRHx . (1)

Here (.)a = ∂/∂a, and the equations as written are valid for flows on surfaces with a positive
slope. For gravity-driven flows, rough estimates for the velocity of advection v and the
frequency γ in terms of the grain diameter d are v ∼

√
gd, γ ∼

√
g/d, where g is the

acceleration due to gravity. The above kinematic equations are multi-species analogs of the
classical single-species kinematic relation embodied in Burgers’ equation [4]. In fact they follow
a long lineage of kinematic models that have been useful in analysing the evolution of surfaces
in geomorphology [5], fluid mechanics [4] etc. Their main strength is the simplicity of the
underlying assumptions. Here we focus on the simplest deterministic BCRE equations that
embody the following phenomenological facts about the flow of granular materials:

1) When R = 0, H(x, t) = const., i.e. the surface does not evolve unless there are grains
in motion. When the surface does evolve, the rate of change of the height of the grains is
proportional to the difference in the slope from the critical angle of repose θr. Thus these
equations are valid only when the free-surface slope is in the vicinity of the angle of repose,
when we can neglect higher-order gradients in R and H. Equivalently, the equations are valid
when the height of the mobile grains R(x, t) is small, and all mobile grains are assumed to be
in contact with the immobile grains, justifying the form of the interaction term γRHx in (1).

2) There is no velocity of convection for H. However, mobile grains are convected at a speed
v in the negative x-direction. In general v must be determined using momentum balance and
requires a constitutive equation that relates stress to strain rate. Here we will assume that v
is constant, reflecting a balance between gravitational acceleration and inelastic collisions, and
comment on a modification of this law at the end of the paper.

3) The equations when linearized about a steady state H(x, t) = H0(x), R(x, t) = R0 =
const. are hyperbolic with two distinct wave speeds v and γR0. The first is simply the velocity
of advection of the mobile species, while the second corresponds to waves traveling upward in
the positive x-direction, i.e. in a direction opposing flow. This is in accordance with common
experience in such instances as an upward propagating wave during an avalanche on an inclined
plane [1].

Equations (1) are homogeneous and quasi-linear and therefore can be linearized via a hodo-
graph transformation [6] that inverts the relationship between the dependent and independent
variables using the transformation x = x(H,R), t = t(H,R) [7]. Here we give a physically
motivated derivation of the resulting simplification when the system (1) is viewed with respect
to a coordinate frame moving with the rolling grains x̂ = x+ vt. Then

Ht = −(v + γR)Hx̂, Rt = γRHx̂ . (2)

Substituting for Hx̂ in the first equation in terms of the second and integrating, we get

H(x+ vt, t) = −
v

γ
ln

(
γR(x+ vt, t)

v

)
−R(x+ vt, t) + F (x) . (3)

Thus, the conservation law (3) is valid in a frame moving with speed v in the negative
x-direction, and relates the Riemann invariants of this system [6] while defining a relation
between H(x+ vt, t) and R(x+ vt, t) for all time. It is sensible as long as j = xHtR − xRtH
and J = HxRt −RxHt do not vanish, i.e. it is valid for all single-valued solutions of (1).

From (2) we also observe that along characteristic curves given by dx̂/dt = γR+v H(x+vt, t)
is constant. From (3), it follows that R(x+ vt, t) is also constant along the curves. Thus, the
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Fig. 1. – Schematic of the two scenarios possible for upward propagating waves far from any boundary.
The slope of the characteristic lines (γR)−1 determines the scenario. (a) An erosion front forms when
Rx < 0 since the characteristics become steeper as we move in the positive x-direction. (b) A
rarefaction wave forms when Rx > 0 since the characteristics become less steep in the direction of
propagation.

system (1) is hyperbolic, supports simple waves [6], and has characteristics that are straight
lines. An interesting interpretation of (3) can be given by rewriting it as R(x + vt, t) =
exp[γ(F (x) −H(x + vt, t) − R(x+ vt, t))/v]. In the frame of the rolling grains, this relation
reflects an Arrhenius-like growth or decay of the mobile phase depending on the difference
between the initial height F and the height of the free surface H+R relative to the line at the
angle of repose. This is consistent with the picture in [2] to describe the nucleation of motion
as a first-order transition. This relation is only valid for small thicknesses of the mobile layer
since it does not account for the diffusion of momentum associated with collisions, which would
change v; we will not consider this question further in this paper.

A consequence of (3) is that it can be used to construct an infinite number of solutions by
simply choosing a functional form for R that is consistent with some set of boundary conditions,
and then evaluating H. A large class of simple boundary value problems are amenable to this
approach. Recent work by de Gennes and his coworkers has lead to the solution of a number
of interesting boundary-value problems for the BCRE equations and its variants [8]. All these
special solutions fall naturally into the rubric provided by (3).

Instead of solving additional boundary-value problems in the context of the BCRE equa-
tions, we investigate the mathematical structure of these equations. Our goal in this is
two-fold: 1) to look for singular solutions that allow us to objectively criticise the strengths
and shortcomings of a model, and suggest regimes of applicability of the equations, 2) to
look for similarity solutions that allow us to characterize certain regimes where the effects of
boundaries and initial conditions are unimportant; thus they provide a different window to the
applicability of the equations. Since (1) is a quasi-linear hyperbolic system [6], it is capable of
forming singularities or shocks in finite time from smooth initial data beyond which the system
is ill-posed. We will study the formation and evolution of these shock-like solutions that are
manifested as propagating discontinuities in the height of the free-surface. To determine the
condition for the formation of these shocks, we take advantage of the existence of simple wave
solutions to (1). The characteristics are given by x = x0 + γR(x0, 0)t; along these lines in
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space-time, both H and R are constant. Of course, this prescription is valid only as long as the
characteristics do not intersect each other, since beyond an intersection, we cannot uniquely
determine the evolution of the free-surface. These points of intersection which correspond to
shocks lie on the envelope of the characteristics which is given by

1 + γRx(x0, 0)t = 0, x = x0 + γR(x0, 0)t . (4)

The earliest time of formation of a shock is given by the minimum of the envelope of these
characteristics in the (t, x)-plane. From (4) it follows that the times of shock formation are
given by t = −(γRx(x0, 0))−1; thus the least time of shock formation is given by dt/dx = 0,
and first occurs at locations in the initial profile where there is a point of inflection, i.e. at
Rxx(x0, 0) = 0. The physical mechanism of shock formation is as follows: at a location where
the mobile layer is thick the wave speed γR is larger than at locations where the mobile layer
is thin, as shown in fig. 1(a). Since the waves move in the positive x-direction, i.e. uphill, this
requires Rx < 0 for the characteristics to intersect in the (x, t)-plane. This corresponds to a
front of erosion that moves uphill as more and more of the immobile phase is entrained by the
mobile phase. If Rx > 0, this results in a rarefaction wave that propagates upwards as shown
in fig. 1(b). These upward moving fronts can be seen in a simple setting such as the flow of
salt in a tilted salt-cellar.

In order to study the evolution of the shock, we modify the BCRE equations by introducing
some diffusive terms to smooth out the discontinuity. Introducing terms similar to those
proposed in [2, 9] we modify (1) to read

Ht = −γRHx + µ(RHx)x ,

Rt − vRx = γRHx + νRxx . (5)

Here (RHx)x reflects the effects of collision-driven relaxation of the solid phase which is
possible only when there are mobile grains, while Rxx reflects the effects of relaxation effects
in the liquid phase in regions of high curvature. The associated diffusion constants are taken
to be µ, ν, respectively. These terms are the simplest ones that respect the symmetry in
the problem while conserving the mass. To determine the structure and velocity of the
erosion front, we restrict ourselves to the case of a weakly nonlinear theory. Then we let
H(x, t) = εH1(x − U0t) + O(ε2), R(x, t) = R0 + εR1(x − U0t) + O(ε2), where ε is small
and characterizes the strength of the erosion front, and U0 is the velocity of the front. On
substituting this form of the solution into (5), at O(ε), we get

U0 = γR0 , −U0R
′
1 = γR0H

′
1 + vR′1, (6)

where (.)′ = ∂/∂ξ, ξ = x− U0t. Thus to leading order the velocity of the front U0 is equal to
the velocity of upward propagating waves γR0, and R1 = −γR0H1/(γR0 + v) + c1. At order
O(ε2) we get

αR0H
′′
1 − γR1H

′
1 = 0 ,

−(v + γR0)R′2 − γR0H
′
2 = γR1H

′
1 + βR′′1 , (7)

by assuming a balance between the diffusive and nonlinear terms, so that α = µ/ε, β = ν/ε.
Substituting for R1 from (6) into the first eq. (7) yields

αH ′′1 +
γ2R0

v + γR0
H1H

′
1 = 0. (8)

On integrating this equation for H, and substituting the result in the second equation in (7),
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Fig. 2. – Schematic of the stoppage flow near a wall.

we get the profile of the traveling erosion front to order O(ε) [10],

Ĥ(x, t) = x tan θ + ε tanh(β(x− γR0t)) ,

R = R0

[
1−

εγ tanh(β(x− γR0t))

γR0 + v

]
. (9)

Here a constant of integration has been absorbed in a rescaling of the height, β = γ2R0/2α(v+
γR0) and ε is determined by the boundary conditions far from the front at ξ → ±∞. This
completes our description of the shock as an uphill-propagating front of erosion corresponding
to a thinner immobile (thicker mobile) region downhill that invades a thicker immobile (thinner
mobile) region.

The BCRE equations as they stand do not differentiate between thick and thin layer flows.
In particular, there is no limit to the thickness of the mobile layer in the context of this theory.
However, observations show that often R(x, t) eventually saturates to a constant value, since
all the grains do not interact with the solid phase. Then a model for thick avalanches consists
of a layer with small vertical velocity gradients riding on the solid phase with a thin shear
band separating the two. Various models have been proposed to take this into account [11,12],
and can be written in the form

Ht = −γ(R)RHx ,

Rt − vRx = γ(R)RHx , (10)

where γ(R)R saturates as R increases. We see that by changing to a frame that moves with
the mobile phase, we can again simplify the equations to

Ĥt = (v − γ(R̂)R)Ĥx̂ ,

R̂t = γ(R̂)Ĥx̂ , (11)

so that H(x̂, t) +R(x̂, t) = v
∫

(logR)tdt/γ(R).
Particular choices of γ(R) that have been used include λR/(λ+ R) [11] and γ0 − γ1R [12]

and also lead to simple conservation laws.
We next use this generalized BCRE equation to look at a specific singular flow related

to the stoppage that occurs when a thin mobile layer encounters a wall, leading to a front
of accumulation that propagates upslope, as shown in fig. 2. A version of this problem has
been recently treated in [13]. The relevant length scales in the problem are the grain size
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and the dimensions of the sand pile. On scales that are large compared to the grain size and
small compared to the dimensions of the pile, we look for a similarity solution to describe this
process. Substituting H(x, t) = h(x/tα), R(x, t) = r(x/tα) into (1) and demanding that all
terms in the equations be of the same order, we find that α = 1. Then the resulting ordinary
differential equations in terms of the similarity variable η = x/t for h(η), r(η) are

ηhη = γrhη , −ηrη = vrη + γrhη . (12)

Solving (12) with the proviso that hη 6= 0 anywhere, and substituting η = x/t, we get an
expression for the actual height of the immobile and mobile phases:

H(x, t) = C + x tan θ −
v

γ
ln
x

vt
−
x

γt
,

R(x, t) =
x

γt
. (13)

We observe that (13) satisfies (3) for the particular choice F (x) = 0, R(x, t) = x/γt. This
solution breaks down in the neighborhood of the origin η = 0, corresponding to x = 0 or t =∞.
To estimate the size of the region near the wall where this happens, we use the regularized
BCRE eqs. (5). Balancing the diffusive term µ(RHx)x with Ht, where H is given by (13),
yields a characteristic length H∗ ∼ µ/γ in the neighborhood of the origin where (13) is not
valid. Inside that region, H ∼ v ln(µ/γvt)/γ,R ∼ µ/γvt. From an experimental point of view,
this simple flow allows one to estimate the parameters v, γ and µ by looking at spatial and
temporal gradients of the flow in the neighborhood of the wall [14].

We conclude with a summary and some general remarks. In this note, we have shown
the existence of a new conservation law that unifies all the special solutions of the BCRE
equations, which is a simplified model for the superficial flow of granular materials. We
have also shown that for certain initial conditions, the equations predict the formation of
shocks which correspond to upward-moving erosion fronts or equivalently, upstream hydraulic
jumps induced by an obstacle in the flow. While the BCRE equations have been successful
in qualitatively predicting a number of the features of simple free-surface granular flows [8],
they have been experimentally probed carefully only in the simplest of situations [15]. Further
experiments are required to quantitatively probe the existing predictions, and will allow us
to modify the equations further to include 1) momentum balance to determine the average
velocity of the mobile layer v [16], 2) a depth-dependent density in rapid flows [17,18].

***
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