
                          

Fluctuation-dissipation ratio in an aging Lennard-
Jones glass
To cite this article: J.-L. Barrat and W. Kob 1999 EPL 46 637

 

View the article online for updates and enhancements.

You may also like
Violation of the fluctuation–dissipation
theorem in glassy systems: basic notions
and the numerical evidence
A Crisanti and F Ritort

-

A fluctuation theorem for non-equilibrium
relaxational systems driven by external
forces
Francesco Zamponi, Federico Bonetto,
Leticia F Cugliandolo et al.

-

The effective temperature
Leticia F Cugliandolo

-

This content was downloaded from IP address 18.118.254.94 on 08/05/2024 at 17:46

https://doi.org/10.1209/epl/i1999-00313-4
https://iopscience.iop.org/article/10.1088/0305-4470/36/21/201
https://iopscience.iop.org/article/10.1088/0305-4470/36/21/201
https://iopscience.iop.org/article/10.1088/0305-4470/36/21/201
https://iopscience.iop.org/article/10.1088/1742-5468/2005/09/P09013
https://iopscience.iop.org/article/10.1088/1742-5468/2005/09/P09013
https://iopscience.iop.org/article/10.1088/1742-5468/2005/09/P09013
https://iopscience.iop.org/article/10.1088/1751-8113/44/48/483001


EUROPHYSICS LETTERS 1 June 1999

Europhys. Lett., 46 (5), pp. 637-642 (1999)

Fluctuation-dissipation ratio in an aging
Lennard-Jones glass

J.-L. Barrat
1 and W. Kob

2
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Abstract. – By using extensive molecular dynamics simulations, we have determined the
violation of the fluctuation-dissipation theorem in a Lennard-Jones liquid quenched to low tem-
peratures. For this we have calculated X(C), the ratio between a one-particle time-correlation
function C and the associated response function. Our results are best fitted by assuming that
X(C) is a discontinuous, piecewise constant function. This is similar to what is found in spin
systems with one-step replica symmetry breaking. This strengthens the conjecture of a similarity
between the phase space structure of structural glasses and such spin systems.

Obtaining information on the phase space structure of glassy systems is a very difficult
challenge. By definition, relaxation times in a glass are so long as to preclude equilibration
within an experimental (or numerical) time scale, except perhaps for very small systems [1,2].
Exploration of phase space in these systems is necessarily incomplete, and the results from any
experimental investigation cannot be expected to be representative of a well-defined statistical
ensemble. Hence, although many conjectures have been formulated concerning the structure
of phase space in glassy systems [3], very little is actually known.

A promising route, that might to some extent bypass this intrinsic difficulty, is the idea
that relevant information on phase space structure is encoded in the nonequilibrium dynamics
of glassy systems. This idea was actively developed in the field of spin glasses [4-6], but
its extension to the field of structural glasses is more recent [7-10]. Among the important
quantities that can be investigated in a nonequilibrium system is the so-called fluctuation-
dissipation ratio X, defined in the following way. Consider an observable A whose normalized
autocorrelation function will be denoted by C, and let R be the response function of A to a
field H conjugate to A. Then, for a system in equilibrium at temperature T , C(t) is related
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to the response function R(t) of the system to H by the usual fluctuation dissipation theorem
(FDT), R(t) = − 1

kBT
dC
dt . In a system that is out of equilibrium (e.g., a system that has been

quenched at t = 0 to a low temperature) the property of time translation invariance is lost,
and C and R become functions of two time variables, e.g. C(t′, t) = 〈A(t′)A(t)〉. A formal
way of generalizing the usual FDT consists in writing, for t′ > t

R(t′, t) =
1

kBT
X(t′, t)

∂C(t′, t)

∂t
, (1)

which in this form is merely a definition of X. The importance of this “FDT violation factor”
X(t′, t) was recognized in the context of mean-field theories of spin glasses [11], where it appears
that X(t′, t) has the properties discussed below. For this discussion it is useful to consider
the situation in which the system is driven out of equilibrium at time t = 0, then aged for a
waiting time tw after which the measurement of the time correlation functions C(tw + τ, tw)
are started. For mean-field models exhibiting glassy behavior it has been shown that in the
limit of long times, tw, τ →∞, X(tw + τ, tw) is a function of the correlation function C only,
i.e.

X(tw + τ, tw) = x(C(tw + τ, tw)) , (2)

where x is now a function of one variable. In this asymptotic limit two regimes can be
distinguished. If tw is kept fixed, C(tw + τ, tw) eventually becomes a function of τ only. The
limiting value of this function for τ →∞ is the Edwards-Anderson parameter associated with
observable A, which is usually denoted by qEA. Obviously qEA vanishes for an equilibrium
system, and differs from zero in a nonergodic system. For 1 > C > qEA, we have x(C) = 1,
meaning that the FDT holds. This means that for time differences that are small compared
to the waiting time tw, the response of the system is similar to that of an equilibrium system,
in spite of the fact that only a restricted part of phase space is explored. Nonequilibrium,
or “aging” features, show up in a different limit, namely for τ > tw. In this limit, the
correlation function depends on both tw and τ in a nontrivial way, typically C(tw + τ, tw) =
F (h(tw + τ)/h(τ)), where h(x) is a monotonically increasing function. In this “aging” regime,
C < qEA, and x(C) < 1. The system starts to sample a larger portion of phase space, but this
sampling is an out-of-equilibrium process, and does not obey the equilibrium FDT.

An important property of x(C), again discovered in the context of mean-field spin glasses,
is that the general structure of this function is identical to that of the function xstat(q)
obtained by inverting the integral of the Parisi function qstat(x). The latter reflects the
probability distribution of overlaps between replicas of the same system, and does not involve
any dynamical consideration [12]. At present, the similarity between these two functions has
escaped physical understanding, although a formal justification has recently been proposed
[13]. This similarity between the two functions is, nevertheless, believed to be a general
feature. If this is the case, the implication is that the study of a dynamical quantity such as
x(C) provides indirect information on the structure of phase space. So far x(C) was determined
for the 3d Edwards-Anderson model [14], for ferromagnetic coarsening [15], for p-spin models
in 3 dimensions [16], for the 3d Ising spin glass [17] and a string in a disordered medium [18],
confirming in each case the general features of mean-field predictions. In this letter, we show
that an accurate determination of x(C) for a structural glass model is indeed possible, using
standard simulation techniques.

The system we study is a 80:20 mixture of 1000 Lennard-Jones particles, with interaction
parameters that prevent crystallization [19]. In the following, we shall use as length, energy
and time units the standard Lennard-Jones units σAA (particle diameter), εAA (interaction
energy), and τ = (mAσ

2
AA/48εAA)1/2, where mA is the particle mass and the subscript A
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refers to the majority species [19]. The system has been described in detail elsewhere, and
its equilibrium (high temperature) properties have been fully characterized. At the reduced
density ρ = 1.2, a “computer glass transition” is found in the vicinity of T = 0.435 and the
slowing down of the dynamics seems to be described well by mode-coupling theory [19]. A
first study of the aging behavior of the correlation functions at low temperatures has also been
published recently [7, 20].

In order to obtain a fluctuation-dissipation ratio, we need to compute C and R for the
same observable. Previous work [7] focused on the aging behavior of the incoherent scattering
function for the wave vector k:

Ck(tw + τ, tw) =
1

N

∑
j

eik·(rj(tw+τ)−rj(tw)). (3)

In order to compute the associated response function, we use the following numerical approach.
A fictive “charge” ε = ±1 is assigned randomly to each particle. An additional term of the
form

∑
j εjV (rj), where V (r) = V0 cos(k · r) is a small (V0 < kBT ) external potential, is

then added to the Hamiltonian. It is then easy to show that, if one averages over several
realizations of the random charge distribution, the time-correlation function of the observable
Ak =

∑
j εj exp[ik · rj(t)] is the incoherent scattering function. The procedure to generate

the response function associated to Ck is thus straightforward: For a given realisation of the
random charge distribution, the system is equilibrated at a high temperature (T = 5.0), and
quenched at t = 0 to the desired final temperature Tf . The evolution is followed with the
field off until a waiting time tw, then the field is switched on and the response Ak(tw + τ, tw)
is monitored. The same procedure is repeated for several (7 to 10) realisations of the charge
distribution, in order to get the response function. The quantity we obtain by this procedure
is then an integrated response function M(tw + τ, tw), defined as

〈Ak(tw + τ, tw)〉 = V0

∫ tw+τ

tw

R(tw + τ, t)dt (4)

= V0M(tw + τ, tw). (5)

This procedure was carried out for three different values of the final temperature Tf , namely
Tf = 0.4, Tf = 0.3 and Tf = 0.1. The amplitude of the external potential was chosen in such
a way that a linear response is obtained at each temperature. For Tf = 0.4, V0 = 0.2 while
for Tf = 0.1, V0 = 0.05. The wave vector was k = 7.25, the location of the main peak in the
structure factor. The runs had a length of 5 · 106 time steps, corresponding to 100000 time
units.

Typical data for the integrated response and for the correlation function is shown in fig. 1,
for Tf = 0.4 and k = 7.25. The way by which the correlation function and the integrated
response are related to each other can be understood well by means of a parametric plot of
M vs. C, as shown in fig. 2 for different values of tw and two different Tf . If the generalized
fluctuation theorem holds, it is easily checked that M can be written as a function of C, with

M(C) = −
1

kBT

∫ 1

C

x(c)dc . (6)

From fig. 2, it is clearly seen that the usual FDT with x = 1 is very well verified for short
times, i.e. values of C close to 1, in that the curves are linear and have slope −1. For longer
times a break in the curves is observed, i.e. the FDT is violated. Some transient effects are
perceptible for the shorter waiting time, but they tend to disappear with increasing tw. This
violation is compatible with the ansatz (2), since the parametric curves obtained for different
waiting times superimpose satisfactorily.
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Fig. 1. – Correlation function C(tw + τ, tw) (dashed lines) and integrated response function M(tw +
τ, tw) (solid lines) for Tf = 0.4, k = 7.25, and two different waiting times.

For the regime in which the FDT is violated, the M(C) curve can have different forms [5,6]:
Domain growth models predict that M(C) is a constant, whereas mean-field models predict
a linear dependence, for the case of “one step” replica symmetry breaking (RSB), and a more
general dependence for the case of continous replica symmetry breaking.

As can be seen from fig. 2, a good fit to the resulting M vs. C curve is obtained with a
piecewise linear function, which corresponds to a piecewise constant x(C):

x(C) = 1 for C > qb, x(C) = m < 1 for C < qb, (7)

where qb is the value of C at which the mentioned break in the curves is observed. Such a
dependence has, e.g., been found for mean-field “p-spin” models [5]. Thus our results give
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Fig. 2. – Parametric plot of the integrated response function M(tw+τ, tw) and the correlation function
C(tw + τ, tw) for k = 7.25. a) Tf = 0.4, triangles: tw = 100, crosses: tw = 1000, circles: tw = 39810.
The two straight lines have slopes −1.0 and 0.62. b) Tf = 0.3, triangles: tw = 1000, circles: tw = 10000.
The straight lines have slopes −1.0 and −0.45.
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support to the hypothesis first formulated by Kirkpatrick and coworkers [21] and revived by
Parisi [10], that structural glasses belong to the same “universality class” as mean-field p-spin
models.

Under the assumption that our results correspond to such a “one-step RSB” behaviour,
we can read off from fig. 2 m ' 0.62 and qb ' 0.6. The latter value is clearly smaller than
the plateau value for the correlation function in fig. 1, qEA ' 0.8. This means that the FDT
appears to hold even for times at which the system is no longer time translationally invariant,
a feature which is not predicted by current theories of aging.

Finally, the dependence of x on the final temperature can be investigated. To explore this
dependence we have also done simulations at Tf = 0.3 and Tf = 0.1. In all cases, we find that
the M vs. C plot can be fitted well by two straight lines. Our results for m as a function
of T are thus given by: Tf = 0.4, m = 0.62 ± 0.05; Tf = 0.3, m = 0.45 ± 0.05; Tf = 0.1,
m = 0.2± 0.1 Within the accuracy of our data these values of m are compatible with a linear
dependence on Tf , quite similar to that found by Parisi [9] for a soft-sphere system. Such a
linear dependance (m(Tf) ∼ Tf) corresponds to a constant “fluctuation-dissipation effective
temperature” Teff = Tf/m. The later concept, introduced in [22], could help rationalize the
older “fictive temperature” idea.

We mention that, in his analysis of the fluctuation-dissipation relation, taking as an ob-
servable the mean-squared displacement, Parisi found that m(Tf) can be approximated by
m(Tf) = Tf/Tc for Tf < Tc, where Tc is the “mode coupling critical temperature” of the
system under study. In our case, Tc ' 0.435 [19], so that our data is in contradiction with
such a simple dependence of m on T . Our results are much more similar to the ones found
by Alvarez et al. for the p-spin model in that these authors found for a temperature a bit
below Tc a value of m which is significantly smaller than 1. The reason for this difference
might be related to the much smaller waiting times used in ref. [9, 23]. In any case, it is not
clear why the mode coupling critical temperature should play a particular role in the present
analysis. If the same type of simulations were carried out at a temperature slightly above Tc,
we would expect that interrupted aging would be observed, so that at short tw a violation of
FDT occurs. As tw increases, equilibrium will progressively be approached, and the M vs. C
plot will approach a straight line with slope −1. Hence the main difference between T > Tc

and T < Tc will be that for T > Tc the M vs. C plot depends on tw, as has been shown for the
Sherrington-Kirkpatrick model in three dimensions [14]. However, for T close to, but above,
Tc this tw dependence will be so weak that it can be neglected for all practical purposes. In
terms of the “effective temperature” Teff = Tf/m, our system falls out of equilibrium above
Tc, so that we can expect Teff to be larger than Tc—which is indeed the case.

In summary, we have shown that the fluctuation-dissipation ratio of a supercooled liquid out
of equilibrium can be computed with good accuracy from MD simulations. Several nontrivial
features predicted by the theory of mean-field spin glasses, beginning with the existence of a
waiting time independent function x(C), seem to be present also in the model structural glass
we study. Our data is compatible with a stepwise constant x(C), which would correspond to
a phase space structure similar to that of spin systems undergoing one step replica symmetry
breaking. This means that phase space is divided by high barriers into different valleys each of
which has the same statistical properties. (The case of continuous replica symmetry breaking
corresponds to a case that the valleys are organized in a hierarchical way.) In any case,
finding a nonzero value of m seems to be a clear indication that a “domain growth” picture is
not applicable to our model. A quantitative comparison between theoretical predictions and
simulation results, similar to the work carried out for testing mode coupling theory, would
be required in order to fully clarify the situation with respect to nonequilibrium dynamics.
However, such calculations are currently not yet feasible.
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