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Abstract. – Andreev reflection in ferromagnet-superconductor junctions is derived in a regime
in which Zeeman splitting dominates the response of the superconductor to an applied magnetic
field. Spin-up and spin-down Andreev reflections are shown to be resolved as the voltage is
increased. In the metallic limit, the transition from Andreev to quasiparticle transport in the
spin-up channels has a non-trivial behavior when spin polarization increases. The conductance
is asymmetric in a voltage reversal, which can be used as a new probe of spin polarization.

The interplay between Andreev reflection and spin polarization has generated recently an
important interest, both theoretical [1–8] and experimental [9–15]. The subgap conductance in
normal-metal–superconductor (NS) junctions originates from Andreev reflection [16]: a spin-σ
electron incoming from the N side is reflected as a hole in the spin-(−σ) band while a spin-zero
Cooper pair is transferred into the superconductor. Since the incoming electron and outgoing
hole belong to opposite spin bands, Andreev reflection couples to a Fermi surface polarization
in the N side of the junction. de Jong and Beenakker [1] showed theoretically that increas-
ing the Fermi surface polarization in ferromagnet-superconductor (FS) junctions suppresses
Andreev reflection because Andreev reflection is limited by the minority-spin channels. Their
prediction was verified experimentally by Soulen et al. [14] and Upadhyay et al. [15], who
used this effect to measure the Fermi surface polarization. On the other hand, Tedrow and
Meservey [17] demonstrated that under specific conditions, a magnetic field can be used to
tune a Zeeman splitting of the quasiparticle excitations in a superconductor [17], and used it
to perform a spin-resolved tunnel spectroscopy in FS junctions [17]. I show in this letter that
Zeeman splitting can be used to resolve the spin-up and spin-down Andreev reflections, with
a different threshold voltage eV± = ∆∓µBH for the transition from Andreev to quasiparticle
transport in a magnetic field H. In NS junctions with Zeeman splitting, the spin-up and spin-
down differential conductances have the same behavior at the Andreev reflection threshold
voltages V±. In FS junctions with Zeeman splitting, a non-trivial behavior at the spin-up
threshold voltage V+ is predicted. In addition, the conductance is asymmetric in a voltage
c© EDP Sciences
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reversal, which allows a possible new determination of the Fermi surface spin polarization
based on spin-resolved Andreev reflection.

Our modeling is intented to describe a point contact experiment in which the transverse
dimension is smaller than the scattering length in the ferromagnetic metal. We neglect disorder
in the superconductor, as well as the proximity effect in the N or F sides of the junction [12,
18–26]. Such a treatment captures the interplay between spin polarization and Andreev
reflection in a multichannel point contact, which appears to be the relevant physics in recent
experiments [14, 15]. Moreover, Soulen et al. [14] succeeded in realizing a high-transparency
point contact between a superconductor and a ferromagnet by a mechanical adjustment. A
similar technique may be used to experiment the situation we consider in this letter.

Let us first consider a NS point contact and derive the physics associated with the interplay
between Andreev reflection and Zeeman splitting in the superconductor. The superconductor
is assumed to have a thin film geometry with the magnetic field applied parallel to the film.
We assume a small orbital depairing parameter while the critical field for destroying super-
conductivity is set by Pauli paramagnetism [27], with large values of Hc2‖ ∼ 5 T for Al thin
films [17]. The spin-orbit scattering length is supposed to be small compared to the super-
conductor coherence length ξ, as is the case for light elements such as Al [17]. This insures
that electrons in the superconductor have a well-defined spin σ at length ξ, and therefore a
well-defined Zeeman energy −µBHσ [17, 28]. The coherence factors of spin-σ electrons (uσ)
and holes in the spin-(−σ) band (v−σ) with an energy ε are

u2
σ = 1 − v2

−σ =
1
2

(
1 +

√
(ε+ σµBH)2 − |∆|2

ε+ σµBH

)
, (1)

with therefore a coupling between Andreev reflection and Zeeman splitting. A step function
variation of the superconducting gap at the interface is assumed: ∆(x) = ∆θ(x). We consider
a δ-function elastic interface scattering potential V (x) = H0δ(x), interpolating between a
metallic contact if H0 = 0 and a tunnel junction if H0 = ∞ [29]. The interface barrier is
normalized with respect to the Fermi velocity: Z = mH0/(�

√
2mµ), with µ = �

2k2
F/2m the

chemical potential [29]. The energy dependence of the transmitted quasiparticle wave vectors
is irrelevant to the present calculation [30]. We assume the normal metal/ferromagnet and
the superconductor to have identical band widths. The presence of a different band width
would renormalize the conductance [5] while keeping the possibility of a spin-resolved Andreev
reflection unchanged.

Since multichannel effects in the NS junction model do not play the same crucial role as in
FS junctions, we first focus on the single-channel NS junction model. The coherence factors
equation (1) leads to the Andreev reflection transition probability of electrons with a spin-σ
and holes in the spin-(−σ) band with an energy ε:

Ae↑(ε) = Ah↓(ε) = ABTK(ε+ µBH), and Ae↓(ε) = Ah↑(ε) = ABTK(ε− µBH), (2)

with ABTK(ε) the Blonder, Thinkham and Klapwijk (BTK) Andreev reflection coefficient [29].
Equations (2) are valid also if ε < 0, in which case transmission of quasiparticles on nega-
tive energy branches should be considered. The zero-temperature differential conductance
of spin-σ carriers in the presence of Zeeman splitting is Gσ(eV,H) = GBTK(eV + σµBH),
with GBTK(eV ) the BTK differential conductance in the absence of Zeeman splitting [29].
Gσ(eV,H) shows a Zeeman splitting for an arbitrary interface scattering in the sense that
the magnetic field enters the conductance via the combination eV + σµBH only. The tunnel
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Fig. 1 – Differential conductance of the NS junction in the metallic limit Z = 0, with a Zeeman split-
ting µBH = 0 (♦), 0.2 (+), 0.4 (�), 0.6 (×) in units of the superconducting gap ∆. The conductance
is normalized to the number of spin channels. The voltage is in units of the superconducting gap
∆. A plateau of 3e2/(2h) per spin channel develops in the conductance when H increases. We have
considered in this figure a multichannel model generalizing eq. (2), with N↑ = N↓ = 141 channels
and µ = 104. The behavior of the multichannel NS model is identical to the single-channel NS model.

spectrum in the limit Z � 1 reproduces the Zeeman splitted density of states of the supercon-
ductor ρσ(ε) = ρBCS(ε+σµBH), with ρBCS the single-spin BCS density of states [17,28,29]. In
the metallic limit Z = 0 and below the spin-up threshold voltage eV+ = ∆−µBH, spin-up and
spin-down transport originates from Andreev reflection, with a conductance equal to 2e2/h
per spin channel (see fig. 1). Spin-up transport transits from Andreev reflection to quasipar-
ticle transport at the spin-up threshold voltage eV+, smaller than the spin-down threshold
voltage eV− = ∆+µBH. In between V+ and V− a plateau of 3e2/(2h) per spin channel devel-
ops in the conductance when H increases, corresponding to an Andreev reflection transport
of spin-down carriers and a quasiparticle transport of spin-up carriers. The strongest field
µBH = 0.6∆ in fig. 1 is close to the paramagnetic breakdown. Figure 1 tends to indicate that
a well-defined plateau of 3e2/(2h) may not be observed experimentally. Nevertheless, two
distinct features at eV± are already present even for moderate magnetic fields (for instance,
H = 0.2∆ in fig. 1).

We now discuss the effect of a spin polarization in the normal metal, in which case
multichannel effects play a relevant role. We show a non-trivial transition from Andreev
to quasiparticle transport at the spin-up threshold voltage V+, as well as a conductance
asymmetric in a voltage reversal. We denote by n and n′ the quantum numbers associ-
ated to a quantized transverse motion in a clean FS point contact of cross-sectional area a2.
We assume a Stoner ferromagnet with an exchange field hex(x) = hexθ(−x). The channel
with transverse quantum numbers (n, n′) in the spin-σ band has a dispersion Eσ

n,n′(kσ) =
�

2(kσ)2/(2m) − σhex + κ(n2 + n′2), with the energy κ = (�2/2m)(π/a)2 inverse propor-
tional to the junction area, and related to the number of spin-σ channels according to
Nσ = π(µ + σhex)/(4κ) [15]. The associated barrier parameter ZF,σ

n,n′ of spin-σ electrons

in the channel (n, n′) is ZF,σ
n,n′ =

(
1 + σ hex

µ − κ
µ (n2 + n′2)

)−1/2

Z, with Z = mH0/(�
√

2mµ).
The transverse dimensions of the S side of the junction are assumed to be identical to the ones
of the N side and the gap, the interface scattering and the exchange field are constant in the
transverse direction, with therefore a conservation of the transverse quantum numbers across
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Fig. 2 – Differential conductance of the FS junction in the metallic limit Z = 0. The conductance is
normalized to the number of spin channels. The voltage is in units of the superconducting gap ∆.
The chemical potential is µ = 104, and the Zeeman splitting is µBH = 0.3 (in units of ∆). In the
absence of a spin polarization, we have N↑ = N↓ = 141 channels. The Fermi surface polarizations
P = (N↑ − N↓)/(N↑ + N↓) are P = 0 (♦), P = 0.21 (+), P = 0.42 (�), P = 0.63 (×), and
P = 0.83 (�). The conductance is asymmetric in a voltage reversal, and has a non-trivial behavior
at the spin-up threshold voltage eV+ = ∆ − µBH. The bottom curves show the asymmetry of the
conductance spectrum GA(V ) = G(V ) − G(−V ) in the range V+ < V < V− for the same values
of the spin polarization. A plateau at GA(V ) � P/2 is present (solid lines). The insert shows the
zero-voltage conductance (♦) and the asymmetry (+) vs. spin polarization P , compared to their
values 2(1− P ) and P/2 obtained from a channel counting argument.

the interface [31]. The pairing Hamiltonian in the S side with a cross-sectional area a2 is

HS =
∑

n,n′,k,σ

(
�

2k2

2m
+ κ(n2 + n′2)

)
c+n,n′,k,σcn,n′,k,σ +

∑
n,n′,k

(
∆c+n,n′,k,↑c

+
n,n′,−k,↓ + h.c.

)
,

with an associated barrier parameter ZS
n,n′ =

(
1 − κ

µ (n2 + n′2)
)−1/2

Z, different from ZF,σ
n,n′

because of the exchange field generating different Fermi wave vectors in the ferromagnet and
the superconductor. The channels with a spin-up Fermi surface only have a real positive ZF,↑

n,n′

and a pure imaginary ZF,↓
n,n′ . Physically, a spin-up electron incoming from the N side below

the superconducting gap in such a channel is Andreev-reflected into an evanescent hole state
in the spin-down band, with a pure imaginary wave vector k↓. The hole propagates in the
ferromagnet over the length scale 1/Im(k↓) before it is backscattered onto the interface and
Andreev-reflected as a spin-up electron, therefore not carrying current, as proposed by de Jong
and Beenakker [1]. Incorporating this process under the form of a pure imaginary interface
scattering allows to calculate transport above the superconducting gap. The matching of
the wave functions between the F and S sides is solved similarly to refs. [29], including the
coherence factors in eq. (1), and the barrier parameters ZF,σ

n,n′ and ZS
n,n′ [32]. The resulting

differential conductance spectra are shown in fig. 2 in the metallic limit Z = 0.
At low voltage, the conductance shows a reduction of Andreev reflection by spin polariza-

tion [1]. The large voltage limiting value of the quasiparticle conductance per spin channel
decreases from the Landauer value e2/h in the absence of spin polarization to e2/(2h) with
a full polarization, because only the ferromagnet channels with a corresponding channel in
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Table I – Number of two reflection and quasiparticle transport channels. “Spin-σ AR” stands for
spin-σ Andreev reflection. “Spin-σ QP” stands for spin-σ quasiparticle transport. The conductance
(in units of e2/h) is normalized to the number of spin channels.

Voltage −V− < V < −V+ −V+ < V < V+ V+ < V < V− V− < V
V < −V−

Spin-up AR N↓ channels N↓ channels − −
Spin-down AR − N↓ channels N↓ channels −
Spin-up QP − − NS channels NS channels

Spin-down QP N↓ channels − − N↓ channels

Conductance 3/2− 3hex/(2µ) 2− 2hex/µ 3/2− hex/(2µ) 1− hex/(2µ)

the superconductor contribute to the quasiparticle conductance. The number of spin-down
quasiparticle transport channels is N↓, while spin-up quasiparticle transport is limited by the
number of superconducting channels NS = πµ/4κ. The total number of quasiparticle trans-
port channels is therefore π(2µ− hex)/4κ, reduced by a factor of two when the exchange field
hex increases from zero to µ.

Now the behavior of the differential conductance at the spin-up threshold voltage eV+

differs qualitatively in the weak and strong polarization regimes: the conductance decreases
with voltage at eV+ if spin polarization is weak while it increases if spin polarization is strong
(see fig. 2). With a weak polarization, most of the spin-up channels are Andreev-reflected
and the decrease in conductance at eV+ can be understood qualitatively on the basis of the
transition from Andreev to quasiparticle transport in the single-channel BTK model [29]. If
spin polarization is strong, a fraction 1 − (N↓/N↑) of the spin-up channels are not Andreev-
reflected if V < V+. These channels however contribute to the quasiparticle current if V > V+,
with a spin-up quasiparticle conductance � (e2/h)NS, larger than the Andreev conductance
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Fig. 3 – Differential conductance of the FS junction with Z = 1. The conductance is normalized to
the number of spin channels. The voltage is in units of the superconducting gap ∆. The chemical
potential is µ = 104, and the Zeeman splitting is µBH = 0.3 (in units of ∆). In the absence of spin
polarization, we have N↑ = N↓ = 141. The Fermi surface polarizations P = (N↑−N↓)/(N↑+N↓) are
P = 0 (♦), and P = 0.83 (�). Spin polarization results simultaneously in a suppression of Andreev
reflection and spin-polarized tunneling.
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� (2e2/h)N↓ if hex > µ/2. The contribution of the different spin channels to the conductance
is given in table I. The approximate conductances in table I reproduce the correct features
of the conductance spectrum obtained in the full calculation in fig. 2. In particular, the
asymmetry in the conductance GA(V ) = G(V ) − G(−V ) is equal to hex/(2µ) = P/2 in the
voltage range V+ < V < V−. As shown in fig. 2, the value P/2 of the asymmetry compares
well with the full calculation. The asymmetry has the same origin in the low- and high-
transparency cases (time-reversal symmetry breaking of quasiparticles in the superconductor
due to Zeeman splitting).

Finally, we have shown in fig. 3 the behavior of the FS junction model with a moderate
transparency (Z = 1). In this parameter range, and in the absence of spin polarization,
two tunnel-like peaks coexist with a finite low-voltage conductance originating from Andreev
reflection. Increasing spin polarization results in a suppression of Andreev reflection by spin
polarization and spin-polarized tunneling (a spin-up peak at eV+ with a stronger weight than
the spin-down peak at eV−). These two phenomena may therefore be observed simultaneously.

To conclude, we have shown that Zeeman splitting can be used to resolve the spin-up
and spin-down Andreev reflections in NS and FS junctions. In metallic FS junctions, the
spin-up quasiparticle current is larger than the spin-up Andreev reflection current if spin
polarization is large. The different behavior in the spin-up and spin-down channels generates
a conductance spectrum asymmetric in a voltage reversal, which provides a new possibility
to probe the Fermi surface spin polarization. We have also shown that the point contacts
with an intermediate interfacial scattering Z ∼ 1 show simultaneously a reduction of Andreev
reflection by spin polarization and spin-polarized tunneling. Finally, it appears that spin-
resolved Andreev reflection in ferromagnet-superconductor junctions allows two simultaneous
determinations of the Fermi surface polarization of the ferromagnet: one determination from
the asymmetry of the conductance and another determination from the zero bias conductance.
The model analyzed in this letter leads to a simple relation between these two determinations
(see the insert in fig. 2). One may ask whether a similar relation would also hold in an
experiment.
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[25] Guéron S. et al., Phys. Rev. Lett., 77 (1996) 3025.
[26] Leadbeater M. et al., Phys. Rev. B, 59 (1999) 12264.
[27] Clogston A. M., Phys. Rev. Lett., 9 (1962) 266; Chandrasekhar B. S., Appl. Phys. Lett.,

1 (1962) 7.
[28] Fulde P., Adv. Phys., 22 (1973) 667.
[29] Blonder G. E., Tinkham M. and Klapwijk T. M., Phys. Rev. B, 25 (1982) 4515.
[30] We calculated the Andreev reflection coefficient of NS junctions with Zeeman splitting with the

full dependence of the quasiparticle wave vectors on H. We neglect the resulting correction of
order µBH/µ � 1 to the Andreev reflection coefficient.

[31] We expect the same qualitative physics as in a contact with different transverse dimensions
of the N and S sides. The asymmetric contact may be solved via a recursion transfer matrix
method; see Kobayashi N., Takahashi S. and Maekawa S., Report No. cond-mat/9906406
and references therein.

[32] In the energy range −∆ + µBH < ε < ∆ − µBH, the backscattering transition probability is
unity, with a real ZF,↑

n,n′ and a pure imaginary ZF,↓
n,n′ while Z is arbitrary. This shows the total

backscattering of spin-up electrons incoming below the superconducting gap in a channel with
no spin-down Fermi surface.


