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Abstract. – A glass surface may still flow below the bulk glass transition temperature, where
the underlying bulk is frozen. Assuming the existence at T = T0 of a bulk thermodynamical
glass transition, we show that the glass-vapor interface is generally wetted by a liquid layer of
thickness l ∼ − ln(T0 − T ) when T → T−

0 . Contrary to standard surface melting of crystals
however, the integrated value of the diffusivity across the interface remains finite for T → T−

0 .
Difference in shape induced by bulk and by surface flow is discussed as a possible means of
experimental detection of surface defreezing.

Glasses embody the paradigm of broken ergodicity in condensed classical systems. While
most approaches to glasses address an infinite, homogeneous system, there is a clear scope
for extension to inhomogeneous situations, as they may be variously realized in real life. The
most common —and conceptually the simplest— kind of inhomogeneity is represented by
the surface. The problem we wish to address here is the state of a free glass surface, in the
neighborhood of the bulk glass transition temperature T0.

In crystals near the bulk melting temperature TM, surface melting is well documented
both experimentally and theoretically. As T → TM along the solid-vapor bulk coexistence
line, most crystalline faces of a majority of substances develop a microscopic liquid film which
spontaneously wets, in full thermal equilibrium, the solid-vapor interface [1, 2]. The thick-
ness of the film diverges as T → TM, explaining among other things why crystals with free
surfaces cannot sustain overheating. The surface acts as a “defect” where the liquid phase
microscopically nucleates.

Due in part to the lack of a comparable understanding of the properties of even bulk
glasses, the possibility that similar phenomena might take place at the surface of glassy ma-
terials has been given very little attention so far, in spite of its potential importance, both
conceptual and practical. Conceptually, the purely dynamical arrest typical of glasses pro-
vides a neater example of broken ergodicity than that of the solid, where the crystalline order
parameter represents an additional complication. Practically, the possible flow of surfaces can
be expected to play a role in measurable properties of glasses, such as friction, surface flow
c© EDP Sciences
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under intense acceleration, interfacial contact, and other phenomena. In this letter, we base
on a thermodynamic glass transition theory, of the type recently considered within the glass
community [3], our first attack to the glass surface problem.

Given a thermodynamic formulation with a well-defined free energy versus some order
parameter, such as the atomic density n(r), or the energy density e(r), the natural approach
to try first is a Landau theory [2]. For crystals, it provides what certainly is the simplest
microscopic theory of surface melting, summarized as follows. Call f(n) the bulk free energy
density, a function of the (uniform) atomic density n. The global free energy cost of a solid-
vapor interface from the solid at x = −∞, to the vapor at x = +∞ is

F [n(x)] =
∫ +∞

−∞

[
f(n(x)) + (J/2)(dn(x)/dx)2

]
dx . (1)

Strictly short-range forces are assumed, and the gradient term (J > 0) accounts as usual
for reluctance of the order parameter n against spatial change, assumed to be sufficiently
slow. Along the solid-vapor coexistence line, and just below the triple point TM, f(n) will
exhibit, besides the two identically deep (solid and vapor) minima f(ns) = f(nv) at n = ns

and nv respectively, a third, shallower minimum f(nl) = f(ns) + ∆ at the intermediate liquid
density nl, in which ∆ = ε0(TM − T ), where ε0 > 0 is a constant.

Minimization of the free energy (1) is formally identical, via the equivalence n → z, x → t,
to minimization of the action of a classical point particle of coordinate z and mass J , moving
in a potential V (z) = −f(z), with energy exactly equal to −f(ns) = −f(nv). The resulting
equilibrium interface profile n(x) exhibits, between the solid and the vapor, an intermediate
liquid film. Calling γ the curvature of f(n) at the liquid minimum, the thickness of the
liquid film is given by l � −√

J/γ ln(∆), which diverges as T approaches TM from below,
demonstrating surface melting (in real crystals, the logarithmic divergence usually turns to a
power law, due to long-range forces, not included in (1) [1, 2]).

To apply arguments similar to these to a glass-vapor interface we must have, as a starting
point, a thermodynamical description for the properties of bulk glasses. For that, a first
necessary assumption is that crystalline states of the system, even if lower in free energy
than any of the glass configurations, can be ignored. Experimentally, crystallization of glasses
can be kinetically avoided by a sufficiently rapid cooling in the absence of crystalline germs.
With this assumption we can consistently speak of the glass transition as an equilibrium
phenomenon, even though it actually occurs on a metastable branch of the phase diagram.

We will thus suppose that there is a thermodynamic glass transition for the bulk sys-
tem. The configurational entropy of the system sc as a function of the enthalpy h (to be
used instead of the internal energy e, since we work at constant pressure) should vanish for h
lower than some h0, and increase linearly for h greater than h0. The glass transition is in
this scheme a second-order, mean field transition [4]. The critical temperature T0 is given by
T−1

0 = ∂sc/∂h|h0
. For T < T0 the system freezes in the configurational ground state, and

thermodynamical variables such as specific heat give information only about the vibrational
structure of the valley around the ground state. For T > T0 a configurational contribution
arises, that counts the number of different valleys that the system is able to sample. The
specific heat has a finite jump at T = T0, sometimes referred to as the Kauzman tempera-
ture [5, 6].

A further connection of this thermodynamic picture with dynamical properties at equi-
librium is given by the phenomenological Adam-Gibbs formula [7], that relates the config-
urational entropy to dynamical variables such as the viscosity, or the diffusivity D, in the
form D = D0 exp[− A

Tsc
], where D0 > 0 and A > 0 are constants. This formula can be made
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Fig. 1 – (a) Generic pressure-temperature phase diagram for a system with glass, liquid, and vapor
phases (a possible crystalline phase is not indicated). (b) Free energy density as a function of the
enthalpy at two coexistence points on the first-order line of (a). The coexistence is between liquid
and vapor in (1), and between glass and vapor in (2).

heuristically plausible [7] but is not rigorous, and should be considered just a useful working
hypothesis. As T → T0, sc and thus D vanish, reflecting the impossibility for the system
to jump between valleys, for only one is thermodynamically favored. When applied to the
previous description of a bulk glassy phase, the Adam-Gibbs formula is consistent with a
Vogel-Fulcher-Tammann–type temperature dependence of the diffusivity, which is experimen-
tally well verified for many different glass formers [5].

Next, we will assume our system to possess in addition to the glass-liquid transition, a
liquid-vapor transition. At each temperature below the liquid-vapor critical temperature the
free energy f(h) will have two minima, one corresponding to the vapor and the other to
the condensed phase, the same minimum comprising both liquid and glass because, as fig. 1
indicates, the glass-liquid transition is second order. At the very minimum the system will be
liquid or glassy depending on whether T is lower or larger than T0. The second-order nature
of the glass-liquid transition reflects in a jump in the second derivative of f(h) at some critical
value of the enthalpy hc (hc may be different from h0 due to vibrational contributions). On
the phase boundary between the vapor and the dense phase the two minima of the free energy
are degenerate, f(h1) = f(h2).

We can now model the glass-vapor interface at bulk coexistence, where the bulk enthalpies
of the two coexisting phases are h1 and h2. We will suppose, as in the crystal-vapor interface,
that the system can be assigned a well defined, slowly varying enthalpy density h(x) at each
position x across the interface. Moreover, for x → −∞ (+∞), h → h1 (h2), forcing the
existence of the interface through the boundary conditions. In the end, we will derive the
interface profile h(x) by minimizing a free energy functional qualitatively similar to that
in (1), but using enthalpy as the order parameter instead of density, and with only two
minima instead of three.

A schematic representation of the interface enthalpy profile h(x) in the case T < T0 is
given in fig. 2. This function interpolates between the two minima h1 and h2 of fig. 1(b).
We expect a weak singularity of h(x) where h = hc, the point in which f(h) has a jump in
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Fig. 2 – Evolution of the interface enthalpy density from the glass at the left to the vapor at the right
(T < T0). The glass-vapor interface is coated by a liquid film of thickness l ∼ x0 − x̃.

the second derivative. The corresponding point x̃ marks the border between the glass at the
left, and the liquid at the right. The liquid transforms into the vapor phase roughly at some
x = x0, where the maximum of f(h) is overcome, and the rate of change of h(x) should be
maximum. The difference l = x0 − x̃ can be identified with the thickness of the liquid layer
that wets the glass-vapor interface. We are interested in the behavior of the system around
T = T0. Exactly at this point hc coincides with the minimum of f , and for slightly different
values it may be supposed to have a linear dependence on T0−T , namely hc−h1 = ε(T0−T ).

To calculate h(x) and from that l, we proceed in the following way. As already mentioned,
the free energy f(h) is smooth except in the point hc, where it has a jump in the second
derivative. We will approximate f(h) with its quadratic expansion close to hc:

f(h) = γ′h2/2 , h < hc ,

f(h) = γ(h− hc(1 − γ′/γ))2/2 + f0 , h > hc , (2)

where we have taken h1 = 0 for simplicity. γ and γ′ ( γ′ > γ) are constants related to the
bulk properties of the material, and f0 is a constant ensuring continuity of f at hc. The Euler
equation satisfied by the equilibrium profile h(x) is, from (1),

df(h)/dh = Jd2h/dx2 . (3)

For f(h) given by (2), the solution can be written in terms of exponentials, and a direct
calculation shows that

h(x) = Ae
√

γ′/Jx , h < hc ,

h(x) = (hm + u)e
√

γ/Jx − u , h > hc , (4)

where u = hc(γ′/γ − 1) and A = hc [(hm + u)/(hc + u)]
√

γ′/γ are values that depend on
temperature through hc. Here we have set x0 = 0, assuming that the barrier of f(h) is
parabolic up to the maximum, that occurs precisely at hm. Then the solution (4) describes
the interface in the condensed region. Deviations are expected to occur around the liquid-
vapor transition. The position x̃ of the liquid-glass interface, namely the point at which
h(x̃) = hc can be written as

x̃ = −
√

J/γ ln[(hm + hc(γ′/γ − 1))/(hcγ
′/γ)] . (5)

This value diverges when T → T−
0 , indicating the presence of a diverging liquid layer of

thickness

l � −
√

J/γ ln
[
ε(T0 − T )γ′

hmγ

]
. (6)



652 EUROPHYSICS LETTERS

8 6 4 2 0
12

10

8

6

4

2

0

( γ /  )x
1/2

(h
  T

   
/ A

) 
ln

 (
D

 / 
D

   
) 

α

0

0.05

0.1

0.2

0.1 0.2

0

  J

m

Fig. 3 – Diffusivity across the glass-vapor interface for different values of ε(T0 − T )/hm, indicated on
the curves (the particular value γ′/γ = 2 was used). The dense phase (glass for T < T0, liquid for
T > T0) is at the left, while for x � 0 the system is in the vapor phase. The curve for the bulk glass
transition temperature T = T0 is shown as a dashed line. Note the finite diffusivity in a “melted”
surface film for T < T0, and also the residually higher surface diffusivity just above T = T0.

The spatial scale for the thickness of the liquid layer is thus given by
√

J/γ , exactly as for a
liquid layer at the crystal-vapor interface. This underlines a common physical origin, namely
a lower surface free energy of the liquid relative to the solid.

The logarithmic increase of the liquid layer thickness close to T0 is at first sight also the
same as that of the liquid layer in short-range crystal-vapor surface melting. However the
conceptual origin of the logarithmic behavior is different here, as it relates to a second-order
liquid-solid transition, as opposed to a first-order one in the crystal case. In practice too,
glass surface melting should be quite different. In crystals, the density jump associated with
melting gives inevitably rise to different optical conductivities of solid and liquid, leading to
a nonzero Hamaker constant H and to long-range dispersion forces ∼ H/l2 [8]. A positive
Hamaker constant will thus enhance surface melting, and generally transform the logarithmic
into a power law growth, l ∼ (TM − T )−1/3 [1, 2]. A negative Hamaker constant will instead
suppress, or block, surface melting [9]. So will, for a different reason, commensuration of
surface layering with the spacing of crystal planes [10]. In the glass there are no crystal planes
to block surface melting. Moreover, the bulk density and optical conductivity of glass and
liquid are not expected to differ discontinuously and the Hamaker constant should basically
vanish. In conclusion, in glass surface melting the logarithmic film growth behavior should be
more robust.

We can also calculate the diffusivity profile D(x). The configurational entropy vanishes
linearly with h close to the liquid-glass transition, namely

sc(x) = α(h(x) − hc) =

= α

[
e
√

γ/Jx

[
hm + hc

(
γ′

γ
− 1

)]
− hc

γ′

γ

]
, (7)

where α is some constant. Using the Adam-Gibbs formula, we obtain

ln (D(x)/D0) =
A

Tα
×

×
[
ε(T0 − T )

[
γ′

γ
−

(
γ′

γ
− 1

)
e
√

γ/Jx

]
− hme

√
γ/Jx

]−1

, (8)
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valid for T close to T0, and x close to the liquid-glass transition value x̃. For larger values
of x − x̃, the non-quadratic nature of the free energy functional (particularly the maximum
between the vapor and condensed phases) should be taken into account properly. If T < T0, the
previous expression is valid for x > x̃, and D is 0 for x < x̃. If T > T0, i.e., if the bulk system is
in the liquid phase, then (8) is valid for all x. In this case D(−∞) is different from zero, and (8)
predicts an enhancement of the diffusivity at the surface compared to that of the bulk. We
have plotted the behavior of D(x) in fig. 3 for different temperatures. It should be noted that
the integrated diffusivity D ≡ ∫

D(x)dx tends to a finite value D ∼ D0

√
J/γ exp

[
−A

T0αhm

]
,

when T → T−
0 . This is at variance with what happens for melting of crystal surfaces, where

D ∼ l. Hence surface melting is in a sense much weaker on the glass surface than on the
crystal surface.

Experimental detection of the liquid layer predicted by theory to exist at the glass-vapor
interface should be possible. One method might be to look for “slumping” (thinning of
one end and thickening of the other end) of initially shape-controlled glass samples in a
centrifuge. The shapes expected for bulk-flow–induced and for surface-flow–induced slumping
are different. Generally speaking, bulk flow under acceleration should preserve sharp edges
and flat profiles, transforming, e.g., a rectangular shape to a trapezium [11]. Surface flow
under parallel acceleration will modify a given profile y(x) in time according to an equation
of the type [12]

∂y

∂t
= C

y′′

(1 + y′2)3/2
, (9)

where y′ = ∂y/∂x, and C is roughly proportional to D and to acceleration g. This sort of
nonlinear heat conduction evolution will not generally preserve sharp edges and flat profiles.
Given, for example, an initial step function y(x, t = 0) = y0θ(x) , it will evolve in the following
manner. First, both edges, the upper one y0 < y < y1(t), and the lower one y2(t) < y < 0 will
become smeared, while a central window y2(t) < y < y1(t) of the face will remain flat. As the
spatial extension of the smeared corners increases with time, the window will gradually shrink,
and after a critical time tc it will close, eliminating all traces of a flat face in the slumped
profile. The time t0 required for the surface smearing front to advance a distance ỹ is roughly
given by t0 ∼ ỹ2η0/(l30ρg), where η0 is the viscosity of the superficial defrozen film, i.e., a value
typical of the liquid, ρ is the density, and l0 ∼ √

J/γ is the film thickness. The possibility
of observing this effect (macroscopically, by reflectivity, and even better microscopically, by
some surface topographic technique) seems quite plausible.

In surface-sensitive calorimetry, alternatively, a progressive defreezing of the surface film
could yield a detectable mark. Surface melting of crystals yields a singularity in the specific
heat of the form ∼ (TM − T )−1−1/(ν−3) when T approaches TM from below (if long-range
forces decay as 1/rν). In the glass, integrating the enthalpy profile (4) across the interface we
obtain a singularity in the specific heat of the form ∼ −ε(γ′/γ − 1)

√
J/γ ln(T0 − T ), when

T → T−
0 . This is again a divergence, as in crystal surface melting, but now a much weaker one.

In compound or polar glasses, the surface static dielectric permittivity could also be a useful
tool. Microscopically, finally, liquid-like surface flow could be detectable by surface-specific
techniques, for example thermal atom scattering.

Glass surfaces can also be very effectively simulated. A simulation study of Pd80Si20
published some time ago does provide a first qualitative suggestion for surface defreezing in
a realistic glass forming system [13]. The glass surface roughness drop demonstrated in that
work upon cooling could now be further elaborated upon in terms of suppression of capillary
fluctuations due to confinement of the liquid film. Our present mean-field theory does not
include capillary fluctuations. Their effect on the liquid film thickness is known to be at
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most marginal in three dimensions in crystal surface melting [14], but will require a specific
treatment in the glass case. Experimental evidence of surprisingly flat glass surfaces [15] do
exist and might be related, although the effect of gravity is not discounted. This is a line of
research that will deserve further theoretical and experimental effort.
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