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Abstract. – Based on a recently formulated mode coupling scheme for Brownian systems,
new analytical expressions are derived for the time-resolved tracer-diffusion, electrolyte friction
coefficient and sedimentation velocity of a colloidal macroion suspended in a many-component
electrolyte solution. Use of these expressions yields good agreement with experimental data
and Booth’s theory of macroion sedimentation. Our theoretical expressions allow for a separate
assessment of the influence of hydrodynamic and potential forces on the relaxation of the
electrolyte atmosphere. Inclusion of hydrodynamic interactions (HI) effects is shown to be
essential for a proper description of colloidal electrolyte friction and sedimentation.

The dynamics of charge-stabilized dispersions of spherical colloidal particles has been stud-
ied for many years using various scattering techniques [1–3]. The Brownian dynamics of
the colloidal macroions is commonly described in terms of an effective macrofluid model of
dressed macroions interacting via an effective pair potential of spherical symmetry. The ef-
fective macroion pair potential has been determined on various levels of approximation from
integrating out the degrees of freedom of the neutralising atmosphere of microions around
the macroions [4, 5]. To date, the screened Coulomb potential of Derjaguin-Landau-Vervey-
Overbeek (DLVO) type is still the most widely used dressed macroion pair potential. Here,
the electrostatic screening effect of the microions is described in mean-field–like way by a
screening parameter κ and an effective macroion charge [6].

While the effective macrofluid model has been successfully used as the basis for a theoret-
ical description of the colloidal statics and dynamics [1–3], it is incomplete since it does not
account for the effect of the non-instantaneous relaxations of the microion atmosphere on the
colloidal dynamics. The theoretical modeling and quantification of these so-called electroki-
netic effects originating from the microion cloud relaxation is a demanding task even in case
of a single macroion diffusing in an unbounded multi-component electrolyte solution. In this
case, experiments have shown that the relative motions of the microions with respect to the
macroion give rise to an increase (decrease) in the friction coefficient (sedimentation velocity)
of the tracer macroion [7–9]. As a consequence, the long-time self-diffusion coefficient, DL

T, of
the tracer shows a minimum when the thickness of the microion cloud, as measured by the
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Debye screening length κ−1, is comparable to the radius of the macroion [9]. The fluctua-
tions in the electrolyte ions (microions) atmosphere surrounding the macroion are coupled to
the corresponding hydrodynamic fluctuations through the intervening solvent. Therefore it
appears necessary to consider direct interactions (relaxation effect) and hydrodynamic inter-
actions (electrophoretic effect) between the tracer and the microions on equal footing for a
proper theoretical treatment of colloidal electrolyte friction and sedimentation.

In this letter, we derive analytical results for the (time-dependent) friction function ∆ζT(t),
the long-time tracer diffusion coefficient DL

T, and the sedimentation velocity U of a spherical
macroion immersed in a multi-component electrolyte solution. The derivation is based on
a unifying simplified mode-coupling scheme (MCS) for the overdamped Brownian dynamics
of macroion and microions governed by the many-body Smoluchowski equation [10, 11]. The
solvent-mediated HI between tracer and microions are described on a pairwise additive level
using the far-field Rotne-Prager (RP) form of the hydrodynamic mobility tensors [10,12]. The
microions are considered as point-like regarding their excluded-volume interactions relative
to the dimension of the macroion, but they are characterised by finite values of their free
diffusion constants. To obtain analytical results, the static microion-microion and macroion-
microion pair correlation functions required as input in the MCS are treated on the basis of
the mean spherical approximation (MSA). For point-like microions, the MSA is identical with
the Debye-Hückel (DH) approximation [13,14].

Consider the tracer diffusion of a spherical macroion of charge number ZT, radius a and
free diffusion coefficient D0

T immersed in a solvent of shear viscosity η and dielectric con-
stant ε. The solvent contains further an m-component mixture of point-like microions of
charge numbers {Zα}, number densities {nα} and free diffusion coefficients {D0

α}. Within the
Smoluchowski dynamics, the time evolution equation for the tracer mean-squared displace-
ment (MSD) WT(t) =

〈
[RT(t)− RT(0)]2

〉
/6 is given by [10]

∂

∂t
WT(t) = DS

T − 1
ζS
T

∫ t

0

du∆ζT(0, t− u)
∂

∂t
WT(u) . (1)

Here, RT(t) is the position vector of the macroion centre at time t, and DS
T = kBT/ζS

T is the
short-time tracer diffusion coefficient which is equal to the initial slope of WT(t). The integral
term including the time-dependent tracer friction function ∆ζT(t) accounts for the electro-
hydrodynamic retardation effects due to the non-instantaneous relaxation of the microions
and the associated solvent.

The time-integrated electrolyte friction contribution ∆ζT =
∫ ∞
0

dt∆ζT(t) is related to
the final slope, DL

T, of WT(t) and to the sedimentation velocity, U , of a slowly sedimenting
macroion in the presence of its neutrally buoyant electrolyte atmosphere by

DL
T =

kBT

ζS
T +∆ζT

= D0
T

U

U0
, (2)

where U0 is the Stokesian sedimentation velocity of the tracer in the absence of electrolyte
ions. While the relation between DL

T and U in eq. (2) is expected to hold on physical grounds,
it can also be derived rigorously using linear response theory [15].

Application of the MCS to the exact microscopic expression of ∆ζT(t), using the RP form
of HI, has led to the following result [10]:

∆ζT(t) =
D0

T

6π2

∫
dk k4 GT(k, t)vT(k) · S(k, t) · vT(k) . (3)
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Within the MCS, ∆ζT(t) is thus expressed in terms of the self-intermediate scattering function
GT(q, t) = 〈exp[iq · (RT(t)− RT(0))]〉 of the tracer, and in terms of m(m + 1)/2 partial
dynamic structure factors Sαβ(k, t), with α, β ∈ {1, ...,m}, the latter describing the partial
density-density correlations of the bulk electrolyte. The Sαβ(k, t) constitute the elements of
the symmetric m × m dynamic structure factor matrix S(k, t). The m-component vertex
vector vT(k) contains the partial vertex functions

vTα(k) = n1/2
α cTα(k)− 1

D0
T

m∑
γ=1

n1/2
γ hd

Tγ(k)S
−1
γα (k) , (4)

where cTα(k) is the direct correlation function for the tracer and a microion of component
α. Here S−1

γα (k) is the (γ, α)-th element of the matrix inverse of the bulk electrolyte static
structure factor matrix S(k) = S(k, t = 0). The HI between macroion and point-like microions
is accounted for in RP approximation through the distinct partial hydrodynamic functions
hd

Tγ(k) [10], given by

hd
Tγ(k) = D0

T V
〈
k̂ · T RP

Tγ (r) · k̂ eik·r
〉
= D0

T

∫
d3r gTγ(r) k̂ · T RP

Tγ (r) · k̂ eik·r, (5)

where T RP
Tγ (r) = a

{
3/(4 r) [1+ r̂r̂] + a2/(4 r3) [1 − 3 r̂r̂]

}
, with k̂ = k/k and r̂ = r/r is the

Rotne-Prager tensor in the limit of microions of zero radius aγ . This amounts to disregard
contributions to the hydrodynamic function of order O(aγ/a).

On the basis of the primitive model for the tracer and microions, we use next the DH/MSA
approximation for the static correlation functions cTα(k) and S(k) entering into the vertex
functions. The DH approximation for S(k) is applicable for monovalent microions of number
densities in a typical range of 10−4–10−3 mol/l. This is the concentration range where the elec-
trolyte friction effect is most pronounced, with κa ≈ 1 and κ defined as κ2 = lB

∑m
α=1 nαZ

2
α.

Here lB = 4π LB, and LB = e2/(ε kBT ) is the Bjerrum length. The DH/MSA form of cTα(k)
is used for analytical simplicity, however, with ZT treated as an adjustable effective macroion
charge [3].

The vertex vector is then determined as

vT(y) =

{ − [
A(y)n1/2 + lB ZT D(y)u

]
, no HI ,

wT(y)ZTu , with HI ,
(6)

with m-dimensional vectors n1/2 and u of elements {n1/2
α } and {n1/2

α Zα}, respectively. More-
over A(y) = 3ΩT j1(y)/y , D(y) = (a2/y) [j1(y)κa/(1 + κa) + cos(y)/y], where ΩT = 4π a3/3
is the tracer volume and

wT(y) = ΩT

(
1 +

(κa)2

y2

)[
w(1)(y) + w(2)(y)

]
− lBD(y) . (7)

Furthermore

w(1)(y) = − 9
2
LB

a

eκa

1 + κa

∫ ∞

1

dx e−κax

(
j0(xy)− j1(xy)

xy

)
,

w(2)(y) = − 3
2

LB

a

eκa

1 + κa

∫ ∞

1

dx
e−κax

x2
j2(xy) , (8)

and x = r/a and y = k a are reduced distances and wave numbers, respectively.
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Due to modest microion correlations in the bulk, S(k, t) is expected to be only modestly
perturbed form its short-time form at later times. Therefore, we approximate S(k, t) in eq. (3)
by its short-time form S(k, t) ≈ exp[−k2 D0 ·S−1(k) t] ·S(k), with D0

αβ = δαβD
0
α, neglecting

the HI between the microions as compared to the strong tracer-macroion HI [3,16]. According
to smart Brownian Dynamics simulations on bulk electrolyte mixtures, the influence of HI
is indeed found to be small for number densities corresponding to κa ≈ 1 [17]. Since S(k, t)
decays much faster than GT(k, t) due to D0

T � D0
α, we further approximate GT(k, t) in eq. (3)

by its short-time form GT(k, t) = exp[−k2 D0
T t], valid in the RP treatment of HI. Notice that

the use of the short-time forms for GT(k, t) and S(k, t) in the friction function ∆ζT(t) is
consistent with the DH/MSA treatment of weak static particle correlations including terms
up to quadratic order in the macroion charge.

The simplified MCS with static DH input, referred to as MCS-DH, leads to analytic
expressions for ∆ζT(t), DL

T and U for the general case of differently mobile microions. For
conciseness we present here results for the long-time properties DL

T and U only. To reveal the
primordial importance of the electro-hydrodynamic coupling to electrolyte friction, we discuss
the cases with and without HI separately. A lengthy calculation based on the vertex vT(k)
without HI in eq. (6) leads to the result

∆ζT
ζ0
T

=
ΩT

3

m∑
α=1

nα

D∗
α

+ 8ΩT LB a2q2
m

∫ ∞

0

dy
j1(y)

y2 + (κma)2

+
16LB

3
ZT qm

∫ ∞

0

dy
y2j1(y)

y2 + (κma)2
D(y)

+
Z2

T κa

6 (1 + κa)2
LB

a

1− d2

d

[
1 + exp [−2κa d ]

d− 1
d+ 1

]
, (9)

where D∗
α = 1+D0

α/D
0
T, qm =

∑m
α=1 D

0
T/(D

0
α +D0

T)nα Zα, κ2
m = lB

∑m
α=1 nα Z2

α D0
α/(D

0
α +

D0
T), and d2 = κm/κ. The corresponding MCS-DH expressions for DL

T and U follow readily
from eq. (2), and ζS

T = ζ0
T = kBT/D0

T valid in the RP treatment of HI.
The MCS-DH result for ∆ζT, with HI described in RP approximation, is given in terms

of the integral expression

∆ζT
ζ0
T

=
Z2

T (κ2 − κ2
m)

6π2 lB a3

∫ ∞

0

dy
y6 wT(y)2

(y2 + κ2a2)(y2 + κ2
ma2)

, (10)

which has been derived using the vertex vector in eq. (6) with HI.
We proceed with a qualitative discussion of eqs. (9) and (10). In the limit a → 0 of

vanishing tracer size both equations reduce to Onsager’s exact limiting expression ∆ζT/ζ
0
T =

LBZ
2
T(κ− κm)/3 for the friction coefficient of a weakly charged multi-component electrolyte

[18]. The coefficient ∆ζT vanishes in the limit {D∗
α → ∞} of infinitely mobile microions,

since the microion cloud remains then spherically symmetric with respect to the tracer at
each instant of time. The friction function without HI includes, contrary to the case with HI,
charge-independent contributions. The first term in eq. (9), proportional to ΩT and indepen-
dent of ZT and {Zα}, gives an electrolyte friction contribution originating from a neutral cloud
of Brownian point-like particles interacting with the excluded volume of the tracer. Without
HI this cloud is described by a non-isotropic steady-state distribution function. To leading
order in the microion densities, this zero-charge friction contribution can be calculated exactly,
with the exact result differing from the MCS result by a factor of 3/2 [15, 19]. For typical
experimental parameters, this charge-independent contribution can overwhelm all other con-
tributions in eq. (9), leading to monotonic increase of ∆ζT with increasing κ in conflict with



478 EUROPHYSICS LETTERS

Fig. 1 – Normalised long-time tracer diffusion coefficient DL
T/D0

T vs. reduced screening parameter κa
for a dilute aqueous dispersion of polystyrene spheres in NaCl solution. System parameters: tracer
radius a = 20nm, effective microion radii aNa+ = 0.28 nm, aCl− = 0.18 nm with corresponding
diffusion coefficients according to the Stokes-Einstein relation Dα = kBT/(4πηaα) for slip boundary
conditions [9], effective macroion charge number ZT = 145, and LB = 0.71 nm. The number density,
n(NaCl), of added salt is small even at κa = 5 corresponding to n(NaCl) = 6 × 10−4mol/l. Solid
line: MCS-DH with HI according to eq. (10); dotted line: MCS-DH without HI according to eq. (9);
dashed line: Coulomb part of the MCS-DH without HI proportional to Z2

T; filled circles: experimental
data taken from [9].

experimental results showing a maximum of ∆ζT near κa = 0.5. The second term in eq. (9)
is again independent of ZT, but it depends implicitly on the {Zα} through the parameter qm.
The MCS without HI predicts thus an extra friction contribution to ∆ζT which persists even
for an uncharged tracer. It arises from differently mobile microions, dynamically coupled to
each other by their Coulomb interactions. Notice that qm = 0 for equally mobile microions.

It is remarkable that, according to the MCS-DH equation (10), charge-independent terms
in ∆ζT are absent when the far-field part of HI is considered, since vT(k) ∝ ZT. The absence
of charge-independent friction contributions with HI follows also from exact low-density calcu-
lations [15]. This non-existence of charge-independent friction contributions can be attributed
to the advection of the point-like microparticles in the Stokesian flow field created by the mov-
ing tracer. This is in accord with the physical expectation that the microions are, concerning
their short-range part of direct (i.e. excluded volume) interactions and HI not qualitatively
different from solvent molecules. The friction effect of the solvent is included already in ζ0

T.
Our finding that HI are essential for a consistent physical description of electrolyte friction
should be compared with earlier approaches of Schurr [20] and Medina-Noyola et al. [19, 21],
the latter approach based on a generalised Langevin equation description, where it has been
attempted to explain the observed maximum of ∆ζT(κ) in terms of direct forces only.

MCT results for the normalised long-time tracer diffusion coefficient DL
T/D

0
T with HI

(eq. (10)) and without HI (eq. (9)) are shown in fig. 1, plotted vs. the reduced screening
parameter κa of added NaCl salt. As seen, the friction contribution to the tracer due to
electro-hydrodynamic microion relaxation is largest when κ−1 is roughly equal to the tracer
diameter. The monotonic decrease of the MCS-DL

T without HI is essentially due to the charge-
independent excluded-volume term on the right-hand side of eq. (9), which gives the dominant
contribution to ∆ζT at larger values of κa. The comparison with experimental data of DL

T for
a dilute dispersion of polystyrene spheres in NaCl solution depicted in fig. 1 (cf. also fig. 2),
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Fig. 2 – DL
T/D0

T vs. κa for two different added salts, NaCl and NaC6H5CO2, respectively. Solid lines:
MCS with HI; dashed lines: Booth’s theory [22, 23]; open and filled circles: experimental data for
aqueous NaCl and NaC6H5CO2 electrolytes, taken from [9]. Macroion parameters ZT, a, aNa+ , aCl−
as in fig. 1, with a

C6H5CO−
2
= 0.43 nm.

suggests that the experimentally observed minimum in DL
T cannot be explained in terms of

direct forces only. A minimum in DL
T(κ) without HI is found only when the second largest

contribution to ∆ζT proportional to Z2
T in eq. (9) is considered alone. This term, however,

gives a minimum in DL
T four times lower and located at κa twice as large as the minimum

obtained in MCS-DH with HI (cf. fig. 1).
Figure 2 shows MCT results with HI for two added salts, NaCl and NaC6H5CO2, re-

spectively, in comparison with corresponding experimental data [9], and results obtained
from Booth’s theory of colloidal electrolyte friction [22], in a corrected version given by
Geigenmüller [23]. The electrolyte friction for NaC6H5CO2 is more pronounced than for
NaCl due to the smaller mobility of the C6H5CO−

2 anions as compared to the Cl− anions.
The MCT results for DL

T are in good accord with the experimental data and they follow
closely the results obtained from Booth’s theory. In Booth’s approach, HI are described on
the level of the Stokes flow created by the sedimenting sphere, with the electrolyte treated as
incompressible. Contrary to Booth’s theory, which deals only with the long-time steady-state
aspect of electrolyte friction, the present MCS leads also to analytical expressions describing
transients in the microion atmosphere [15]. It allows furthermore for a separate analysis of
potential and of hydrodynamic force effects.

In summary, we have presented a simple mode coupling scheme of colloidal electrolyte
friction with HI included, leading to results which compare quite well with experimental
data. The versatile MCS can be rather straightforwardly extended to systems with large
electrostatic macroion potentials and to systems like charged micelles, where finite-size effects
of the microions are important. Finally, the present MCS can be generalised to describe
electrokinetic effects in concentrated macroion dispersions with strongly overlapping double
layers. Work on these extensions of the MCS is in progress.
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