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PACS. 78.20.Bh – Optical properties: Theory, models, and numerical simulation.

Abstract. – The interaction Hamiltonian for a dilute classical liquid of polarons à la Feynman
in the presence of long-range Coulomb interaction is derived and the dielectric function is
computed in mean field. Above a critical concentration the liquid becomes unstable. The onset
of the instability is signaled by the softening of a collective optical mode in which all electrons
oscillate in phase in their respective self-trapping potential. We associate the instability with a
metalization of the system. Optical experiments in slightly doped cuprates and doped nickelates
are analyzed within this theory. We discuss why doped cuprates metalize whereas nickelates
do not.

An electron moving in a highly polarizable lattice can distort the environment and create
a potential which self-traps the electron. The resulting object can move by dragging the
distortion resulting in a heavy particle called Fröhlich polaron [1,2]. Apart from its motion as
a whole, the polaron has an extra degree of freedom which can be thought of as the electron
oscillating in the self-trapping potential. Because of this internal mode, a polaron can be
polarized in an external electric field. Recently Fratini and Quémerais [3] have shown that a
Wigner crystal of Fröhlich polarons can become unstable due to the dipole-dipole interaction.

In this letter a model Hamiltonian that takes into account the interactions due to mutual
polarization is derived. It is shown that a polaron liquid or more generally a liquid of po-
larizable particles becomes unstable for high enough concentrations due to the dipole-dipole
interaction. The onset of the instability is indicated by a softening [4] of the internal mode of
the polaron which can be measured in optical experiments [4–9]. Recent experimental results
in cuprates and nickelates are analyzed within this scenario [4, 5].

For simplicity, we work in the limit of a hot polaron liquid, i.e. at temperatures larger than
the Fermi temperature. We expect, however, that to some extent the effect would survive at
low temperatures.
c© EDP Sciences
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We concentrate on the case of dielectric polarons but we believe that our results are valid
also for other kinds of heavily dressed particles in solids as long as they have a polarizable
internal degree of freedom.

Consider an electron in a dielectric with static dielectric constant ε0 dominated by lattice
polarization, i.e. for the time being we assume for the high-frequency dielectric constant
ε∞ = 1.

If the electron is not allowed to move it will generate a radial polarization of the lattice
towards itself. This distortion implies that some ionic positive charge (q) will accumulate in
the vicinity of the electron. The charge induced in the lattice is [10,11]

q = e

(
1− 1

ε0

)
. (1)

Now let us free the electron. If the electron binds to the induced lattice charge we have a
dielectric polaron. In this case for the electron to move it has to drag the distortion of the
lattice.

To describe this situation, we use the effective model corresponding to Feynman’s varia-
tional approximation for the polaron [12, 13]. The effect of the distortion is mimicked by a
heavy fictitious particle of mass M . The electron of mass m is coupled to the heavy particle
with a harmonic potential. The result is a composite particle. The non-interacting Hamilto-
nian for a liquid of such particles is H0 =

∑
i Hi, with

Hi =
p2

i

2m
+

P 2
i

2M
+

k

2
|ri − Ri|2. (2)

The first term in Hi is the kinetic energy of the electron. The second term is the kinetic
energy of the fictitious mass representing the surrounding deformation. The third term is the
coupling between the electron and the distortion. pi, ri (Pi, Ri) are the momentum and
position of the electron (fictitious mass) i.

In the original formulation by Feynman the action corresponding to eq. (2) is regarded
as an effective action for one Fröhlich polaron and the parameters M and k are obtained
variationally. Additionally the system described by Hi gives the first approximation to the
dynamics of a Fröhlich polaron in an alternating electric field [14]. Here we take for granted
that H0 is a first approximation to describe the dynamics of a polaron liquid and explore the
consequences of the long-range Coulomb interaction derived below.

The interaction energy Eint(r1,R1, r2,R2) for two of these particles at distances much
larger than the polaron radius can be derived from elementary electrostatic considerations.
On physical grounds we will assume that the induced charge q, since it is associated with the
distortion, is centered on Ri. Consider first the case R1 = r1 and r2 = R2. In this limit the
interaction energy is given by the usual electrostatic expression

Eint =
e2

ε0|r1 − r2| . (3)

This energy includes the vacuum electrostatic energy of the screened charges plus the elastic
energy stored in the dielectric:

Eint = ECoul + Eela. (4)

The former is

ECoul =
e2

ε20|r1 − r2| , (5)
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i.e. the bare Coulomb energy between the screened charges (e/ε0 = e − q). Equation (4) can
be solved for the elastic energy:

Eela =
e2

|r1 − r2|
1
ε0

(
1− 1

ε0

)
. (6)

The factors with the dielectric constant in eq. (6) ensure that the elastic energy is zero for an
infinitely rigid lattice (ε0 → 1) or an infinitely soft lattice (ε0 → ∞).

Suppose now that we move the electrons from the equilibrium position keeping ions fixed
so that the distortion does not move, i.e. ri �= Ri. Since the elastic energy depends only on
the configuration of the lattice, we should replace in eq. (6) ri → Ri, so that in general the
elastic energy is

Eela =
(e − q)q
|R1 − R2| , (7)

where we eliminated ε0 using eq. (1) for the induced lattice charge q.
The Coulomb energy can be decomposed into elementary Coulomb interactions between

the two electrons and the two charges q. For general position of charges and distortions it
reads

ECoul =
e2

|r1 − r2| −
eq

|r1 − R2| −
eq

|R1 − r2| +
q2

|R1 − R2| , (8)

which reduces to eq. (5) for ri = Ri.
Adding again the elastic and Coulomb energy we can write the interaction Hamiltonian

for a dilute liquid of dielectric polarons treated à la Feynman:

Hint =
∑

ij,i�=j

1
2

e2

|ri − rj | −
eq

|ri − Rj | +
1
2

eq

|Ri − Rj | (9)

where indices i, j run over particles.
A similar argument can be used to derive the interaction Hamiltonian with an external

electric field. The Coulomb contribution of the induced charge cancels with the elastic part
and one obtains

HE =
∑

i

eri · E. (10)

The many-particle Hamiltonian is H = H0 +Hint +HE .
It is convenient to change to center-of-mass variables, ρi = (rim + RiM)/(M + m),

ui = ri − Ri. Making a Taylor expansion for small ui, we obtain the following interacting
Hamiltonian in the dipole approximation:

Hint =
∑

ij,i�=j

1
2

e(e − q)
|ρi − ρj | −

e(e − q)
1 +m/M

ui · (ρi − ρj)
|ρi − ρj |3 − e(e − q)

2(1 +m/M)2
ui · φ(ρi − ρj) · ui +

+
1
2

(
e(e − q)

(1 +m/M)2
+ eq

)
ui · φ(ρi − ρj) · uj , (11)

where we defined the matrix φµν(ρ) = δµν/ρ3 − 3ρµρν/ρ5 and µ, ν are Cartesian indices.
The Hamiltonian equations (3) have the essential ingredients to treat the interacting po-

laron problem at concentrations such that the interparticle distance exceeds the polaron radius.
Now we compute the dielectric constant of such a system. To obtain the equations of

motion for one particle in the mean field of the others, we compute the forces Fui
= −∂H/∂ui



J. Lorenzana: Instability in a liquid of Feynman polarons 535

and Fρi
= −∂H/∂ρi. The former is the force that polarizes particles and the latter is the

force acting on the center of mass. The equations of motion in mean field read

µü = −ku + 4πLnequ − e

1 +m/M
E , (12)

(m +M)ρ̈ = −eE , (13)

where u ≡ 〈ui〉, etc., n is the density of particles, 1/µ = 1/m + 1/M , and L is a geometric
factor discussed below.

A crucial point in the derivation of eqs. (12) is the evaluation of the force due to dipole-
dipole interactions FL = equ · 〈∑j,j �=i φ(ρi − ρj)〉. This is the well-known Lorentz-Lorenz
local field, i.e. the dipolar field at ρi due to dipoles at positions ρj averaged over the position
of the dipoles. Using the well-known results from the theory of dielectrics [15], we obtain the
second term in eq. (12). Either for a random isotropic distribution of dipoles or for a cubic
array L = 1/3. For other distributions L can be computed using the results of ref. [16] (see
below).

In the limit n → 0 the equations of motion (eq. (12)) reduce to the ones corresponding
to the Lagrangian equation (19) of ref. [14] and one recovers the first-approximation single-
polaron theory. At finite density we see that the effect of the interactions is to renormalize
the spring constant to a smaller effective spring constant keff = k − 4πLneq. Clearly for
high enough density the system becomes unstable as discussed below. We mention that a
more involved theory will also take into account the feedback effect of the interactions on the
variational parameters k and M . Such a self-consistent theory is beyond the scope of this
work. We expect, however, that this self-consistent effect will reinforce the softening.

By putting E = E0e
−iωt, we solve for the dipole moment Π and compute the polarization

vector P ≡ nΠ, where in the original variables the dipole moment is Πi ≡ −eri + qRi.
Finally from the relation between P and E one obtains the following dielectric function

for the interacting polaron liquid:

ε(ω) = 1− Ω2
p

ω2 + iγω
− ω2

p − Ω2
p

ω2 − ω2
coll + iγ′ω

, (14)

where we have introduced the phenomenological inverse relaxation times γ, γ′ and defined the
bare plasma frequency ω2

p ≡ 4πne2/m and the polaron plasma frequency Ω2
p ≡ 4πne2/(M +

m). The Drude term has the correct form for quasiparticles of mass (M+m), thus as usual the
latter can be identified with the polaron effective mass. We have also defined the renormalized
frequency of the internal mode

ω2
coll ≡ ω2

0 − q

e
L

(
1 +

m

M

)
ω2

p , (15)

where ω0 ≡ √
k/µ is the frequency of the internal mode of an isolated polaron.

The dielectric function equation (14) takes a very simple form: the sum of a Drude term
plus a collective excitation at frequency ωcoll. The latter consists of all electrons oscillating
in phase inside their respective self-trapping potentials. In this oscillation polarons develop
time-dependent in-phase dipole moments. The dipole-dipole interaction tends to soften this
mode and the effect increases as the interparticle distance decreases, i.e. density increases
(∝ ω2

p) [17]. Equation (14) can be seen as a generalization of both Drude model and Clausius-
Mossotti equation [15]. Notice that the f -sum rule is exactly satisfied.

At some critical density given by 4πnc/e2m = ω2
0e/qL(1+m/M) the energy cost to displace

the electrons away from the respective lattice distortion vanishes and an instability occurs.
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Within this simplified model, we cannot describe the new phase that arises for n > nc. In fact
we assumed above that electron and distortion are bound and, even more, that the binding
potential is harmonic. Both approximations will break down close to nc. Interestingly, if
a positive quartic term were present in the distortion-electron potential, the system would
become a liquid crystal of ferroelectric polarons above the critical density.

A less exotic possibility is that polarons start to dissociate. This can occur either abruptly
or in a continuous way. In the former case all polarons collapse at nc, whereas the latter case
can be realized by a two-component system of coexisting polarons and free electrons [3,18–20].

Recently the softening of a polaron band has been observed as a function of doping [4] in
the Nd2−xCexCuO4−y system. We have used eqs. (14) and (15) to analyze this and other data.

Slightly doped cuprates show a polaronic band, phonon bands, a mid-IR band and a charge
transfer band [6–9] (we neglect much weaker magnetic bands [21–23]). Following Calvani and
collaborators, we fitted reflectivity data [4, 6, 7] on Nd2CexCuO4−y and in the isostructural
compound Pr2CexCuO4−y [24] with a Drude-Lorentz model for the dielectric constant (a sum
of Lorentzians plus a Drude term, see ref. [6]). The model dielectric function is of the same
form as in eq. (14) but for the addition of phonons and of high-energy electronic contributions,
and with an appropriate ε∞ replacing 1. Because of the electronic screening, ωp and Ωp in
eq. (14) should be considered screened plasma frequencies. Hubbard-type correlations and
band effects are assumed to be included in the definition of the mass m. Two Lorentzians
were used above 104 cm−1 to fit the charge transfer band and higher-energy contributions.
Four Lorentzians were used below 800 cm−1 to model the TO phonons, one Lorentzian above
5000 cm−1 (depending on sample) was used to fit the mid-IR band (MIR) and finally one
Lorentzian below 2000 cm−1 was used to fit the internal mode of polarons. Neither n nor
y are well-controlled variables, so we use ω2

p(∝ n) as our control parameter estimated from
the collective mode oscillator strength (eq. (14)). The Drude contribution, very small for
ωp < ωp,c (see fig. 1), was neglected. A rough estimate of the Fermi temperature at ωp,c gives
a value < 100K, so at ambient temperature we are dealing with a hot polaron liquid and
the present model applies. This is further supported by the fact that the samples are very
weakly metallic.

In fig. 1 we show ω2
coll vs. ω2

p. Both quantities are obtained from the fits. As found by Lupi
et al. [4] in this doping range we see a rapid decrease of the internal mode energy. To estimate
the rate of decrease, we neglect the two higher doping points (they are in the region where
our approximations break down) and we do a linear regression. We obtain a slope of −0.6.

To get a theoretical estimate of the slope in eq. (15), we need the Lorentz-Lorenz local
field factor L. Using the results of ref. [16], we estimate L = 0.6 for Nd2CuO4−y and for the
electric field of the radiation parallel to the Cu-O plane.

Also the induced charge in the lattice will not be given any more by eq. (1). In fact
eq. (1) gives the total induced charge but part of this charge, which we call qe, is induced
in the electronic degrees of freedom. This should be subtracted from +q and added to −e
since it will follow antiadiabatically the electron and hence is positioned at ri, not at Ri.
This effect is taken into account by replacing q/e by (q − qe)/(e − qe) in eq. (15). qe can
be estimated, using long-wavelength Lyddane-Sachs-Teller–like arguments [15], to be of the
order of qe = e(1 − 1/ε∞)(1 + 2/ε0)/(1 + 2/ε∞). Using ε0 = 30 and ε∞ = 5 [6], one gets
(q − qe)/(e − qe) = 0.91. Finally, as a first approximation, we can take (1 +m/M) ∼ 1 so we
obtain for the slope −0.55, in excellent agreement with the experiment. The linear regression
extrapolates to ωcoll = 0 at a critical value ω2

p,c = 7.6× 106 cm−2.
The first available point with n > nc shows a sudden increase of Drude weight in accord

with the expected metalization. This occurs at much lower doping than the insulator super-
conducting transition observed at lower temperatures [25]. We believe that more complicated
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Fig. 1 – The parameter ω2
coll (full line) and Drude weight (doted line) vs. ω2

p from Drude-Lorenz fits
to reflectivity data in Nd2CuO4−y [4], Nd1.96Ce0.04CuO4−y (reduced) [26] and Pr2−xCexCuO4−y [24]
with x = 0 (reduced) and x = 0.05 (as grown). The line is a linear regression (see text). The vertical
arrow shows the critical plasma frequency.

phenomena like charge ordering may change the picture at low temperatures [4]. Quantum
corrections will also be important close to nc and at low temperatures.

Lupi et al. find that the collective mode subsists at a small finite frequency for n > nc (see
also fig. 1) and then monotonously decreases as doping is increased at a much slower rate [4].
This suggests a scenario where the polarons stabilize at a concentration slightly below nc

and added carriers go to free states. Different versions of such two-fluid model have been
considered in the literature [3, 18–20]. Interestingly, this coexistence implies that for a finite
doping range the system is at the verge of a dielectric anomaly with a soft electronic mode.
Provided this behavior persists in the low-temperature degenerate regime, one can speculate
that Fermi liquid anomalies will arise. A related scenario including the softening of an optical
electronic mode associated with metalization has previously been proposed [27].

The present theory also explains why a material like doped La2NiO4 never becomes metal-
lic. In this system the observed energy of the internal mode for small doping is roughly by
a factor of 3 larger than in Nd2CuO4−y [5]. On the other hand, taking (1 + m/M) ∼ 1,
the slope of ω2

coll vs. ω2
p depends only on structural and dielectric properties which are quite

similar in both compounds. We then expect a similar slope of ω2
coll vs. ω2

p and, according
to eq. (15), a critical plasma frequency ω2

p,c for the nickelate a factor of 9 larger than in the
cuprate. On the other hand, the observed spectral weight in this system reaches a maximum
and decreases again as a function of doping [5]. We estimate the maximum ω2

p reached by
integrating the fitted line shapes in ref. [5] to be roughly 9 × 106 cm−2, which is almost an
order of magnitude smaller than the estimated ω2

p,c. This means that on dimensionless scales
(ω2

coll/ω2
0 vs. ω2

p/ω2
p,c) only the first ∼ 10% of the dashed line in fig. 1 is physically accessible

and the system never reaches the point in which it should metalize. Meaningfully a modest
softening of the internal mode is actually observed [5] in this relatively small ω2

p/ω2
p,c variation

range consistent with eq. (15).
To conclude, we have derived a many-body Hamiltonian that takes into account dipole-

dipole interactions in a polaron system in a general way. We obtained the dielectric constant in
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mean field for a liquid of such particles and showed that the system becomes unstable for large
concentration. We argue that the theory explains a rapid softening of the internal mode of
the polaron recently observed in cuprates [4] and discussed the presence or absence of doping-
induced metalization of cuprates and nickelates. We speculate that the same framework can
be used to explain the occurrence of metalization or not as a function of doping in a wide
range of materials where the electron-phonon interaction dominates.
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