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PACS. 61.20.Lc – Time-dependent properties; relaxation.

Abstract. – The time signals relevant for nonresonant spectral hole burning, a pump-wait-
probe method designed to investigate slow relaxation, are calculated. The step-response func-
tion following the application of a high-amplitude ac field (pump) and an intermediate waiting
period is shown to be the sum of the equilibrium-integrated response and a modification due
to the preparation via ac irradiation. Both components are calculated for a class of stochastic
dipole reorientation models. The results indicate that the method can be used for a clearcut
distinction of homogeneously and heterogeneously broadened susceptibilities as they occur in
the slow primary relaxation of supercooled liquids and other disordered materials. This is
because only in the heterogeneous case is a frequency-selective modification of the response
possible.

Disordered materials such as glasses, spin-glasses, disordered crystals and proteins exhibit
nonexponential relaxation behavior on macroscopic time scales [1]. In the past decade several
experimental techniques have been invented in order to investigate the detailed nature of
the nonexponential primary response particularly of amorphous polymers and supercooled
liquids [1–3]. These techniques allow to specifically select a (slow) sub-ensemble and afterwards
monitor its relaxation. They have shown the existence of dynamic heterogeneities [4]. In
accord with the definition given in ref. [5], a response or relaxation function is termed dynamic
heterogeneous if it is possible to specifically address effectively slow, intermediate or fast
contributions of the ensemble-averaged function. Otherwise, the relaxation will be termed
homogeneous.

Recently, the technique of nonresonant spectral hole burning (NHB) has been developed
and applied to study the primary relaxation of supercooled liquids on the time scale of sec-
onds [6]. In the meantime, NHB has also been used to investigate the slow relaxation of
disordered crystals [7], amorphous ion-conductors [8] and spin-glasses [9]. The interpretation
of the results has mainly been guided by the fact that via the application of a large-amplitude
ac field of frequency Ω (10−2Hz–102Hz) the sample absorbs energy of an amount proportional
to the imaginary part of the susceptibility evaluated at the pump frequency Ω [10]. It was
assumed that a frequency-selective modification of the spectrum should be feasible only if the
c© EDP Sciences
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response is given by a heterogeneous superposition of entities relaxing at different rates. How-
ever, the results of a recent numerical investigation of the application of NHB to a solvable
glass-model [11] suggest that this view may have to be revised. Beyond phenomenological
interpretations a deeper understanding of a pump-wait-probe experiment like NHB can be
expected from a thorough analytical analysis, which, however, has not been presented up
to date.

It is the purpose of this letter to provide a sound response theory for NHB. The experimen-
tal protocol of NHB consists of the following procedure [6]. First, a large-amplitude ac pump
field EP sin (Ωτ) is applied to a sample in thermal equilibrium for a time tp = n(2π/Ω), n =
1, 2, 3, . . . . After this pump period the system is left in zero field for a waiting time tw before
the step response is monitored via the application of a small-amplitude dc field ES at time
t = 0.

In contrast to ordinary nonlinear response theory, I calculate the linear response of a vari-
able S(t) to the static field ES but with a disturbed initial state of the system prior to the
application of ES. This initial state is calculated in order O(E2

P). Correspondingly, the re-
sponse reads as R∗(ES, EP, t, tw, tp) = R(ES, t)+∆R(ES, EP, t, tw, tp), where R(ES, t) denotes
the equilibrium integrated response. The “modification” ∆R(ES, EP, t, tw, tp) originates from
the deviations from thermal equilibrium at time t = 0 and consists of two terms of order
O(EP) and O(E2

P), respectively. A subtraction of the signals following the application of a
positive and a negative dc field ES along with the addition of the signals obtained for a positive
and a negative pump allow to extract the relevant terms in O(ES), O(E2

P). This corresponds
to the phase cycle employed in experiments [6]. The final result reads as

R∗(t, tw, tp) = R(t) + ∆R(t, tw, tp) , (1)

with R(t) = (1/2)(R(ES, t)−R(−ES, t)) ≡ R(ES, t) and

∆R(t, tw, tp) = N
∫ t

0

dτ Tr
{
S(0)e−iL(t−τ)

[ − iL1(ES)
]
e−iL(τ+tw)∆ρ2(tp)

}
. (2)

Here, L is the Liouvillian, L1(ES) the first-order perturbation due to the dc field and N is a
constant. ∆ρ2(tp) denotes theO(E2

P) deviation from thermal equilibrium of the density matrix
directly after the pump. This results from two terms, L1(EP) and L2(EP) of respective order
O(EP) and O(E2

P) [12]. It is evident from eq. (2) that a nonvanishing ∆R(t, tw, tp) results only
because the system has been driven out of equilibrium prior to the linear response experiment
and eq. (1) shows that the modified response is just the sum of the ordinary linear response
and the modification. Therefore, in the NHB experiments the linear response starting from
a modified inital state (in O(E2

P)) is monitored as opposed to ordinary nonlinear (dielectric)
experiments.

In order to be able to further discuss the implications of eqs. (1), (2), in the following I will
consider explicit models of stochastic dynamics without inertial terms. This is a reasonable
assumption for the slow relaxation processes of interest in the present context. The results
obtained so far can be used directly for the corresponding Fokker-Planck (FP) or master
equation (ME) obeyed by the conditional probability P (x, t), where x(t) denotes the stochastic
process under consideration [13,14]. For a FP equation, the nonlinear response theory can be
formulated in general terms [15]. In this case the resulting expressions are particularly simple
because higher-order terms like L2(E) vanish.

If a ME is considered instead the situation can be quite different. The procedure of
calculating the response as for a FP equation can be utilized only if the transition probabilities
in the ME are chosen in such a way that a Kramers-Moyal expansion [13] is possible. If,
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however, the “jump length” in the transition probabilities is large, the question how to couple
the transition probabilities to the field arises. This can be understood most easily with the
following argument. Denote the transition probability for an xi → xk transition without
externally applied fields by κk,i(t) = κ(xk, xi; t), the time-dependent probability distribution
pi(t) = P (xi, t) and the equilibrium probability by peqi = pi(t → ∞) in a discrete notation.
From ordinary statistical mechanics the change in the peqi ∝ e−βεi , with β = 1/(kBT ) (kB
is the Boltzmann constant) and εi the energy, is known. If the field E couples to a function
M(x), these are just given by peqi (E) = peqi exp [βM(xi)E]. How to change the κk,i(t) when
an external field is applied is however not easily determined in the general case. The only
restriction is that detailed balance has to be obeyed and this will be used in all what follows.
The most general form for the κi,k(E, t) therefore is

κi,k(E, t) = κi,k(t)eβEΨi,k , where Ψi,k = αM(xi)− (1− α)M(xk) , (3)

with α denoting a real number. The perturbation series for the ME follows from eq. (2) if one
substitutes (−iL) by the master operator W and the perturbation (−iLn) by a corresponding
V(n) in O(En). The matrix elements of W and V(n) are given by

(W)i,k = κi,k(t)− δi,k

∑
l

κl,k(t),

(V(n))i,k =
1
n!
[βE(t)]n

{
κi,k(t)Ψn

i,k − δi,k

∑
l

κl,k(t)Ψn
l,k

}
. (4)

The constant α is determined by calculating the long time limit of the pk(E, t) as these have
to coincide with peqk (E) in the presence of external fields. For example, for a ME that obeys
a Kramers-Moyal expansion, one has α = 1/2 [13].

To fix the notation, in the following I will consider the reorientations of rigid molecules
with a permanent dipole moment µ. Thus S(t) in eq. (2) is identified with µ(t), the stochas-
tic process x(t) with the orientation w(t) = (φ(t), θ(t), ψ(t)) in terms of Euler angles and
M(wi) = µi = µ cos θi. For simplicity, correlations due to the dipolar coupling of dis-
tinct molecules and local field corrections are neglected throughout. A simple way to model
molecular reorientations is to assume that they occur in a completely random way. This is
usually termed as a “random jump model” [16]. In this model the transition probabilites
for a change in orientation from wi → wk are independent of wi, wk and are given by
κk,i = Γ/N ∀i, k = 1, . . . , N . (If reorientations on a sphere are considered, N = 8π2.)
The equilibrium probabilities are peqi = 1/N and therefore the choice of α is not determined
a priori.

In the following, I will consider a slight modification of this random jump model, for which
the corresponding ME can still easily be solved analytically. This model is defined by the
choice

κk,i(t) = peqk Γ(t) , (5)

which depends only on the final orientation of the transition. From this fact it is evident that
for this model α = 1. Additionally, a time-dependent rate Γ(t) is considered because this will
be used in the later discussion. A simple choice yielding a nonexponentially decaying response
is

Γ(t) = btb−1/τ, b ∈ [0, 1] , (6)
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which reduces to a time-independent rate τ−1 for b = 1. Though the considered model is very
simple minded, it still shows the characteristic features of any stochastic model. In models
with more complex (time independent) κk,i several rates λm will occur as the eigenvalues
of the master operator W. The mean decay rate in such more sophisticated models can be
defined by (1/N)

∑
m λm = (1/N)

∑
i κi,i. As this just equals τ−1 for b = 1, cf. eq. (6),

the simple model on average also reveals the features of more realistic ones. Furthermore, if
only two orientations are considered, N = 2, the time-honoured double-well potential (DWP)
model with an asymmetry (ε1 − ε2) [17] is recovered.

The response for the model defined by eqs. (5), (6) is now calculated according to eqs. (1),
(2) using (4). The resulting normalized response is given by Φ(t) = e−tb/τ and

∆Φ(t, tw, tp) = − (βEP)2

〈∆µ2〉 A(Ω, b)(t
b/τ)e−tb/τe−tb

w/τ , (7)

with 〈∆µ2〉 = 〈µ2〉 − 〈µ〉2, 〈µn〉 = ∑
i p

eq
i µn

i . The magnitude of the modification at a given
pump frequency, i.e. the “excitation profile”, is given by (tp ≡ 2nπ/Ω)

A(Ω, b) = 〈µ〉2〈∆µ2〉(b/τ)2e−tb
p/τ

∫ tp

0

dt1
∫ t1

0

dt2 sin (Ωt1)tb−1
1 sin (Ωt2)tb−1

2 etb
2/τ +

+
1
2
(〈µ〉2〈µ2〉 − 〈µ〉〈µ3〉)(b/τ)e−tb

p/τ

∫ tp

0

dt1 sin (Ωt1)
2
tb−1
1 etb

1/τ . (8)

Equation (8) reveals one of the central results of the present calculations, namely the frequency
selectivity of NHB. A(Ω, b) vanishes for large and small burn frequencies Ω. This directly
implies that a nonvanishing modification of the response can only be achieved for Ω on the
order of τ−1. The sign of A(Ω, b) is determined by the prefactor of the second term and
therefore depends on the details of the assumptions for the peqi . Note that for a vanishing
〈µ〉 = 0 one has A(Ω, b) = 0. Furthermore, for a DWP model, it is easily seen that 〈µ〉2〈µ2〉 =
〈µ〉〈µ3〉 and the second term of A(Ω, b) vanishes. The same holds approximately, if only small
asymmetries are assumed in the general case. Therefore, in the following calculations the
second term of A(Ω, b) will be neglected throughout.

A transparent expression allowing a simple interpretation for the excitation profile is ob-
tained for the special case b = 1:

A(Ω, 1) � 3
2
〈µ〉2〈∆µ2〉ε′′(Ωτ)ε′′(2Ωτ)(1− e−tp/τ

)
. (9)

Here, ε′′(mΩτ) = mΩτ/(1 + m2Ω2τ2). Therefore, A(Ω, 1) is determined by the absorbed
energy and higher-order terms, in accord with what is expected on physical grounds [6].

In fig. 1 the normalized excitation profile A(Ω, b)/Amax is plotted as a function of the
pump frequency for b = 1 and b = 0.7 and one pump cycle. For b = 1, the excitation profile
is considerably narrower than for b = 0.7 and also than the Debye susceptibility ε′′(Ωτ). This
means that the selection is restricted to a narrow band of frequencies. Decreasing b gives rise
to broader excitation profiles.

Important features of the modification ∆Φ(t, tw, tp) given in eq. (7) are the following. i) If
∆Φ(t, tw, tp) < 0, the modified response Φ∗ decays faster than the equilibrium response. In
the approximation used in eq. (9) this always holds. The fact that ∆Φ(t, tw, tp) �= 0 only
for Ω on the order of τ−1 has already been discussed above. ii) ∆Φ(t, tw, tp) is only nonzero
in a finite interval of time t, determined by b. The regime of ∆Φ(t, tw, tp) �= 0 becomes
larger with decreasing b (i.e. the “spectral holes” become broader). The maximum value
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Fig. 1 – Normalized “excitation profile” An(Ω, b) = A(Ω, b)/Amax vs. Ω/Ωmax for b = 1, Ωmaxτ = 0.736
(full line) and b = 0.7, Ωmaxτ = 0.185 (dashed line). Also shown is the imaginary part of the
susceptibility, ε′′(Ωτ), where τ is the relaxation time, (dotted line) for comparison. The lines for
An(Ω, 0.7) and ε′′(Ωτ) have been shifted by 0.5 and 1.0 units, respectively.

Fig. 2 – ∆Φ(t) vs. rescaled time t/tmax for (a) a heterogeneous and (b) a homogeneous scenario for
various burn frequencies Ω and β2E2

P/(∆µ2) = 0.18. In both cases the equilibrium response decays

as Φ(t) = e−(t/1s)0.7
. The time tmax = 1.0 s in case (a) and tmax = 0.095 s in case (b). The used

frequencies are: heterogeneous scenario: Ωτ = 5.0 (1), 1.0 (2), 0.2 (3) 0.1 (4); homogeneous scenario:
Ωτ = 5.0 (1), 1.0 (2), 0.1 (3), 0.05 (4); experimental data in (a) are adapted from ref. [6] and plotted
in a scaled form (∆Φ(t) = −∆ε(t)/(ε(∞)− ε(0))). Here, Ωτ = 1.02 (2) and Ωτ = 0.203 (3).

of the modification is found at the time tmax = (1/τ)1/b. For a homogeneous response (a
fixed value of τ) a variation of the pump frequency will only alter the overall amplitude of the
modification. Therefore, it is not possible to perform a frequency-selective modification in this
case. iii) The modification decreases as a function of the waiting time tw. This re-equilibration
proceeds with the same relaxation time τ . The reason for this behavior becomes evident from
the form of the modified orientational distribution after the pump, pMod

k (tp) ∼ (µk − 〈µ〉)peqk ,
which in turn relaxes with the dipole relaxation time τ . For more sophisticated models, other
relaxation times λ−1

m may occur here. The important finding is that there is no extra time
scale for re-equilibration. It should be mentioned that similar results are found for a variety
of stochastic models of dipole reorientation [18].

In order to further clarify the implications of the calculations, in the following I will
consider specific examples. Often a stretched exponential function is used to parametrize
the equilibrium response, Φ(t) = e−(t/τK)βK , with βK smaller than unity, see, e.g., [1]. In
a heterogeneous scenario, this response is viewed as originating from a distribution of τ [1]
whereas Φ(t) is assumed to be intrinsically non-exponential in a homogeneous scenario. It is
important to note that in both cases the response can be written as Φ(t) =

∫
dτ g(τ)e−t/τ , with

some distribution function g(τ). However, only in the heterogeneous scenario the distribution
function g(τ) has a physical significance in the sense that it can be modified in some way, e.g.,
by the experimental techniques cited above. In the homogeneous scenario, on the other hand,
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it merely expresses a mathematical identity and a selection of a sub-ensemble is impossible.
It is instructive to compare directly the results of calculations for the two extreme scenarios

for a realistically broadened susceptibility. Such a comparison of ∆Φ(t) is shown in fig. 2 for
(a) a heterogeneous and (b) a homogeneous scenario with Φ(t) = exp [−(t/1s)0.7]. The calcu-
lations were performed in the following way. For the heterogeneous case (a) I used b = 1, i.e.
Γ = Γ(t) = 1/τ in eq. (6) and a corresponding distribution of τ chosen in such a way that Φ(t)
is well described by exp [−(t/1s)0.7]. The modified response is then given by a superposition
∆Φ(t, tw, tp) =

∫
dτ g(τ)∆Φ(τ, t, tw, tp), cf. eq. (7). In the homogeneous case (b) I set b = 0.7,

τ−b = 1s from which a KWW form of Φ(t) follows immediately. From the calculations for
the heterogeneous case it is evident that the time at which the maximum modification shows
up strongly depends on the burn frequency Ω. This demonstrates the frequency selectivity
of NHB. Such a dependence is missing completely in the homogeneous case. In the hetero-
geneous case the maximum modification shifts towards longer times with decreasing Ω. This
is because those relaxation processes with a τ yielding the maximum A(Ω, 1) (cf. eq. (9) and
fig. 1) contribute most to ∆Φ(t). The functional dependence of ∆Φmax = ∆Φ(tmax, tw = 0, tp)
upon Ω depends sensitively on the choice of the relaxation time distribution (e.g., on the value
of βK). Generally, there will be a rather strong dependence for large Ω which crosses over to
a Ω-independence of ∆Φmax when 1/Ω reaches the smallest relaxation time of the distribu-
tion. Exchange processes, which may be responsible for fluctuations of relaxation rates, may
partially suppress the Ω-dependence [18].

Also included fig. 2(a) are experimental data on propylene carbonate [6]. It is remarkable
that all main features of the data can be described by the simple heterogeneous model. The
position of the modifications and the relative amplitudes are in quantitative agreement with
the data. Also the width and the asymmetry are described with high accuracy. A similar
quantitative agreement is obtained for the tw-dependence of experimental data on supercooled
liquids [18].

So far, I have considered stochastic models for dipole reorientations. All these models
show qualitatively the same features. In particular, it is found that the re-equilibration during
the waiting time tw takes place on the time scale of the intrinsic relaxation time (τ in the
above examples). In an experiment on a relaxor ferroelectric a re-equilibration time much
longer than 1/Ω has been found [7]. In order to investigate the theoretical conditions for
such an effect, I consider a simple “nonlinear Debye model”. A physical realization of this
scenario may be a system where the dynamics is dominated by domain wall depinning [19].
The polarization is assumed to relax with a correlation time τ0 = τ∞eβUa , where Ua is the
activation (pinning) energy and 1/τ∞ an attempt frequency. Application of an electric field
will change the activation energy roughly by an amount Ua(t) = Ua(0)−cPspE(t), where c is a
constant and Psp the spontaneous polarization [20], which in the simplest case is proportional
the the applied field, Psp ∝ E(t). The relaxation of the deviation from thermal equilibrium
of Ua(t) is assumed to obey a linear law: ∂tδUa(t) + γδUa(t) = c∂t[E(t)2] (meaningful for
γ < 1/τ0), where the rate γ may depend on the magnitude of deviation from equilibrium.
This expression together with the equation for P (t), ∂tP (t)+(1/τ)P (t) = χ(1/τ)E(t), can be
solved inO(ES) andO(E2

P) for the NHB situation. Here, χ denotes the dielectric susceptibility
and τ = τ0e

δUa(t). The calculation leads to results similar to those obtained above with
Φ(t) = e−t/τ0 and ∆Φ(t, tw, tp) ∝ e−γtw . The important point is that in this model 1/γ, and
not τ0 is the relevant time scale for re-equilibration.

In conclusion, I have shown that NHB can be understood as a linear response experiment
starting from a nonlinearly perturbed initial state. Generally, it is always possible to separate
the linear response from the effects of the pump process. For systems with stochastic dynam-
ics the method is clearly able to discriminate between homogeonously and heterogeneously
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broadened dielectric spectra. A frequency-selective modification of the response is possible
only in the heterogeneous case. The re-equilibration during the waiting time is determined
by the relaxation of the modified orientational distribution created during the pump period.
The hole recovery does not show the appearance of a second time scale. A longer time scale
for re-equilibration, if it is observed, has to be attributed to intrinsic nonequilibrium effects.
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I am grateful to R. Böhmer, H. Sillescu, O. Kircher, G. Hinze and R. Schilling
for very fruitful discussions and comments.

REFERENCES

[1] For reviews see: Sillescu H., J. Non-Cryst. Solids, 243 (1999) 81; Böhmer R., Curr. Opin.
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