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Polylipids anchored to membranes:
Modulated phases and collapse
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PACS. 82.35.Gh – Polymers on surfaces; adhesion.
PACS. 87.16.Dg – Membranes, bilayers, and vesicles.

Abstract. – Phase separation in membranes incorporating components functionalized with
water soluble polymers exhibits novel features. These occur because the domain rich in func-
tionalized components is decorated by a polymeric brush. Three main scenarios may occur;
i) phase separation with a lowered interfacial free energy between the domains, ii) formation
of modulated phases, iii) repression of the phase separation. While the discussion focuses on
the collapse behavior of a single polylipid anchored to a membrane, the conclusions apply to a
wide variety of systems.

Membranes incorporating anchored polymers play a role in both biological systems and
biotechnology applications. Examples of the first category include the Glycocalix and the
Cytoskelton [1]. “Stealth” liposomes decorated by terminally anchored poly(ethylene oxide),
which are used as drug delivery vehicles, exemplify the second category [2]. Experimental stud-
ies demonstrated that polysoaps anchored to membranes can induce morphological changes
in giant liposomes [3,4]. These observations motivated theoretical studies of membranes dec-
orated by anchored polymers [5–7]. These studies concern the effect of the anchored chains
on the elasticity of the membrane. They focus on the case of singly anchored chains where
the anchor is compatible with the phospholipids forming the membrane.

In the following we extend these theoretical considerations to allow for two additional
factors: i) Anchors that are incompatible with the phospholipids forming the membrane.
ii) Polymers incorporating multiple anchors that are joined by flexible and water-soluble spacer
chains. As we shall see, phase segregation in this system is associated with frustration leading
to a novel phase diagram. When the anchors are inserted into the membrane the spacer chains
joining them form loops that are grafted to the membrane. Segregation of the incompatible
anchors decreases the area per loop thus causing crowding, i.e., the demixing is associated
with the formation of a brush [8]. In turn, the crowding of the loops within the brush gives
rise to a free-energy penalty that opposes the segregation of the anchors. When the spacers
are long, this penalty can suppress the demixing altogether. For shorter spacers the system
resolves the frustration by forming a variety of modulated phases. These are reminiscent of
the modulated phases formed in single-component Langmuir monolayers [9]. In this last case
the modulation is the result of long-ranged electrostatic interactions. In marked contrast, in
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Fig. 1 – Schematic view of the architecture of a polylipid with a block structure involving m blocks,
each comprising q phospholipids joined by a flexible spacer chain consisting of n monomers.

Fig. 2 – The state diagram of a single polylipid anchored to a membrane as a function of χl and of n as
calculated for m = 100, q = 3 and b2/a = 0.15. The curves depict the crossovers obtained in the text.

the present case the modulation arises because of short-ranged interactions between the loops
forming the brush.

Our discussion concerns polylipids that is, polymers incorporating covalently bound phos-
pholipid monomers (fig. 1). In particular, it deals with multiblock copolymers comprising m
phospholipid blocks consisting each of q phospholipid monomers. In the following we assume
that the lipid blocks are flexible. The lipid blocks, the anchors, are joined by flexible, neu-
tral and water-soluble blocks incorporating n monomers of size b. The chain is assumed to
incorporate a single type of phospholipid denoted by α. The membrane considered is fluid,
comprising a single phospholipid, β, such that α and β are incompatible. The interactions
between the α and β phospholipids are characterized by kTχl of order of few kT [10]. Water
is assumed to be an athermal good solvent for the spacer chains, joining the α blocks, i.e., the
corresponding Flory interaction parameter is χ = 0. For simplicity it is further assumed that
the head-group areas of the α and β lipids are identical, a. Typically, a varies in the range
of 50–70 Å2 [11]. The α blocks are presumed embedded in the β membrane thus providing
anchors to the chain. It is assumed that all the α blocks are embedded and that there is no
exchange with the bulk. The lateral mobility within the membrane enables phase separation
of the α and β lipids. The αβ phase separation thus gives rise to the formation of dense α
domains decorated by a brush. The nature of the resulting phases depends primarily on the
values of n and q, that determine the magnitude of the brush penalty, and the incompati-
bility of α and β as specified by χl. In general, the αβ phase separation should couple to
the elasticity of the membrane and give rise to morphological changes. At this early stage
we mostly ignore this effect and limit the discussion to a planar membrane. For brevity we
focus the discussion on the two-dimensional collapse of a single polylipid chain, see fig. 2. It
is important to note that the modulated structures that appear in a single collapsed polylipid
also appear in the many-chain system and that the same control parameters are involved(1).
Furthermore, while this letter is concerned with the case of polylipids, the discussion applies,
with some modification, to a much wider class of systems. One such system are membranes

(1)This is ensured by the equality of the chemical potential of the isolated chains and the dense phase that
coexist with them.
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incorporating lipids functionalized by a single chain, m = 1, q = 1. Since q allows to tune the
size of the anchors, it also allows to capture the essential physics of membranes incorporating
polymers anchored to membrane proteins. This parameter plays an important role in our
discussion because the brush penalty suppresses the αβ phase separation for q = 1. Note
that the synthesis of polysoaps with a block structure similar to the one postulated above
has been reported [12]. Our discussion begins with the collapse of a polylipid into a uniform
hemi-globule, neglecting boundary effects. Next, we allow for the effect of the brush on the
line tension of finite hemi-globule. The so-called overspill effect [13] can lower the line tension
to zero, a state defining the stability limit of this configuration. The modulated configurations
that replace the hemi-globule are analyzed next by comparing the free energies of the various
possible structures. In every case, the free energies of the brush component are based on the
blob picture [8]. The role of exchange attractions on the chain configurations, and on the
phase behavior in general, is then briefly discussed. We finally comment on aspects of the
coupling between the αβ phase separation and the elasticity of the membrane.

It is helpful to begin with the simplest situation involving the two-dimensional collapse of
a single polylipid into a hemi-globule with a uniform density of α lipids and radius which is
much larger than the thickness of the brush, L0. We initially ignore the role of the line tension
associated with the boundary of the hemi-globule. The collapsed configuration is determined
by two terms in the interaction free energy of the chain. One is the mixing free energy per
site Fmix/kT = χlφ(1 − φ) + (1 − φ) ln(1 − φ), where φ = mqa/R2 is the area fraction of
the α lipids. The translational term, (φ/mq) ln φ, was deleted because it does not play a role
in the single-chain problem. The second term is the free-energy penalty per site due to the
formation of a planar brush Fbrush/kT ≈ (n/q)(b2/qa)5/6φ11/6. The last term is obtained
from the free energy per loop nkT (b2/Σ)5/6 where the area per loop is Σ = R2/m = qa/φ and
the number of sites per loop is Σ/a = q/φ. It is instructive to consider the virial expansion
of Fint = Fmix + Fbrush

Fint

kT
≈ vφ2 + wφ3 +

n

q

(
b2

qa

)5/6

φ11/6 , (1)

where v = kT (1−2χl) is the second virial coefficient and w = 1/3 is the third virial coefficient.
The density within the globule is determined by the condition that the osmotic pressure of
the monomer vanishes, π = 0 [14]. As in the familiar scenarios this corresponds to φ ≈ w/|v|,
i.e., the binary monomer-monomer attraction is balanced by ternary repulsions. However,
in our case, the brush term gives rise to an activation barrier at φ ≈ n6|v|−6q−11(b2/a)5.
As stated earlier, this analysis overlooks the role of boundary effects and their influence on
the line tension. At the edge of the hemi-globule the loops forming the brush spill sideways
thus lowering their crowding [13]. This overspill effect gives rise to a negative correction to
the line tension, τ . The effective τ reflects two contributions: One, τl ≥ 0, is due to the
interaction between the incompatible lipids. The correction due to the overspill effect, τos,
may be estimated by considering the work done by the system as the brush expands sideways.
A brush element of unit width is assumed to expand so as to occupy a volume element of
cross-section L2

0, where L0 /b ≈ n(b2/Σ)1/3 is the equilibrium height of the brush. This leads
to the expenditure of πL2

0, where the osmotic pressure is estimated by π ≈ kT/ξ3 and ξ ≈ Σ1/2

is the blob size within the Alexander model. For brevity we limit the discussion to strongly
incompatible α and β such that φ � 1 and Σ1/2 ≈ ξ � (qa)1/2. In this case we may estimate
τl by τl/kT ≈ χl/a1/2, thus leading to

τa1/2

kT
≈ χl − n2

q1/2

(
b2

qa

)5/3

. (2)
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While τ > 0 the hemi-globule adopts a circular form and the radius of the α domain is
(mqa)1/2. However, τ decreases as n increases leading, eventually, to τ = 0 when χl ∼
n2/q13/6. This condition specifies the limit of stability of the hemi-globule since when τ < 0
it is beneficial to increase the length of the boundary indefinitely. This argument cannot
however specify the equilibrium structures that replace the hemi-globule because the creation
of longer boundary gives rise to small α domains for which the planar brush model is no longer
applicable.

To specify the equilibrium structures that replace the unstable hemi-globule it is necessary
to compare the free energies of the different possible chain configurations. In the following we
will analyze the following chain configurations: i) hemi-cylinder with a rectangular α domain
of length H and width W supporting a hemi-cylindrical corona; ii) a string of p ≥ 1 hemi-stars
each with an α domain of radius R ≈ (mqa/p)1/2 smaller than the span of the corona; iii) a
swollen chain where the brush penalty repressed the collapse altogether. The equilibrium
states reflect an interplay of two contributions. One is the free energy of the αβ boundary. It
increases roughly along the sequence: hemi-star, hemi-cylinder, string of hemi-stars, swollen
chain. The second is the brush penalty. Its magnitude diminishes as the volume available to
a loop increases. It thus decreases along the sequence: cylinder, star, string of stars, swollen
chain.

The free energy of a collapsed chain in the hemi-cylindrical form reflects two contribu-
tions. The αβ boundary gives rise to a term of the form (W + H)τl, where WH ≈ mqa.
The coronal free energy per loop, when W is small compared to the width of the corona,
is n3/8(mb/H)5/8kT [8]. The free energy of the hemi-cylindrical form is thus Fcyl/kT ≈
m(bW/qa)5/8n3/8 +(W +mqa/W )χl/a1/2. The equilibrium condition ∂Fcyl/∂W = 0 leads to
W/a1/2 ≈ χ

8/13
l qn−3/13(b2/a)−5/26 and thus the equilibrium free energy of the hemi-cylinder is

Fcyl/kT ≈ mχ
5/13
l n3/13(b2/a)5/26 . (3)

The free energy of a string of hemi-stars reflects the same two contributions. However, the
change of symmetry results in different functional forms. The boundary contribution is τlpR
while the coronal free energy of an individual star-like corona of thickness Ls/b ≈ (m/p)1/5n3/5

is kT (m/p)3/2 ln Ls/R ≈ kT (m/p)3/2 [8]. This form applies when Ls � R. The total free
energy of the chain is thus Fs/kT ≈ m3/2p−1/2 + χlm

1/2q1/2p1/2. The equilibrium condition
∂Fs/∂p = 0 determines the equilibrium number of hemi-stars per chain

p ≈ χ−1
l mq−1/2 (4)

and the equilibrium free energy of the chain

Fs/kT ≈ χ
1/2
l mq1/4 . (5)

The free energy of the swollen case is dominated by the interactions between the α lipids
anchors and their β neighbors. Each anchor block is assumed to comprise a flexible chain
incorporating q α-lipids. In two dimensions the collapsed and ideal chain configurations exhibit
an identical scaling behavior, and the anchor may be envisioned as an α domain of radius
r ∼ (qa)1/2. The line tension associated with these domains, τl, determines the free energy of
the swollen chain Fsw/kT ≈ τlr or

Fsw/kT ≈ mq1/2χl . (6)

Having specified the different states of the chain we are in a position to obtain its state
diagram as depicted in fig. 1. A crossover between the hemi-globule and a single hemi-star,
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p = 1, is found by comparing (5) with the dominant term in the free energy of a dense, φ � 1,
hemi-globule

Fg/kT ≈ mn(b2/qa)5/6 . (7)

It occurs at m ≈ n2(b2/qa)5/3. Upon increasing n further the single hemi-star breaks into a
string of hemi-stars. The boundary of these two regimes is specified by p = 1 as given by (4)
leading to χl ≈ mq−1/2 (line 3). Eventually, for yet larger n the collapse is repressed altogether
and the chain remains swollen. The boundary of the swollen chain regime, as obtained by
comparing (5) and (6), occurs at χl ≈ q−1/2 (line 4), up to logarithmic factors. At lower values
of χl, the hemi-globule transforms into a hemi-cylinder when increasing n. The crossover, as
specified by comparing (7) and (3), occurs at χl ≈ n2q13/6(b2/a)5/3 (line 1). Note that this
boundary is identical to the stability limit obtained from (2). The boundary between the
hemi-cylinders and the hemi-stars occurs when (3) equals (5) for p = 1 and is specified by
χl ≈ m13/10n−3/5(b2/a)1/2. Finally, upon increasing n further the chain assumes a swollen
configuration. The boundary between the hemi-cylinder and the swollen configuration occurs
at χl ≈ n3/8q−1/2(b2/qa)5/16 when (3) and (6) are comparable (line 6). While crossing of
free-energy curves is a rough diagnostic for a first-order phase transition, our considerations
are too rough to investigate this aspect.

The analysis presented above specifies the local structure of the chain. Additional consid-
erations are necessary in order to determine the large-scale chain configuration. Two extra
ingredients are required. For the hemi-cylinders, it is necessary to determine the persistence
length, lp, associated with the bending modulus. It is found that W � lp � H, thus sug-
gesting that the hemi-cylinder is semiflexible. A detailed discussion of this point is beyond
the scope of this letter. The second ingredient is the effect of exchange attraction. When the
coronas of two α domains are at grazing contact, the spacer chains may assume two configu-
rations: one where both α anchors reside in the same α domain and a second, where each α
anchor resides in a different domain. When the residence time is short enough, this leads to
gain in free energy of roughly kT ln 2 per loop, thus giving rise to an entropic attraction that
favors grazing contact [15]. A more detailed analysis reveals that the resulting attraction at
grazing contact of hemi-stars scales as kTp1/2 [16]. The exchange attraction favors a collapsed
configuration of the chain. For the case of a string of hemi-stars, the chain will form a circular
domain of close-packed hemi-stars. The effect of the exchange attraction on the configuration
of hemi-cylindrical chain requires an analysis of “hairpin defects” and is beyond the scope
of this letter. Importantly, the exchange attraction is expected to lead to phase separation
in many chain systems when the individual chains assume a hemi-star or a hemi-cylinder
configuration.

Multicomponent membranes, comprising a mixture of different lipids or of lipids and pro-
teins, are capable of undergoing phase separation leading to the formation of mesoscopic
domains. The phase behavior is strongly modified when one of the components is attached to
a water-soluble polymer. Three main scenarios are possible: i) mesoscopic phase separation
with a reduced line tension between the domains; ii) formation of various modulated phases;
iii) complete repression of the phase separation. Our analysis of these scenarios focused on
the case of a single polylipid (m � 1) anchored to a membrane. However, with certain
straightforward modifications the discussion can be applied to many-chain systems as well as
to singly anchored chains (m = 1). For many-chain systems it is necessary to allow for the
translational entropy of the chains. For singly anchored chains clearly there is no collapse
and the phenomenology we discussed is only expected for many-chain systems. Importantly,
for typical values of a the phase segregation is repressed whenever q = 1. It can only occur
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when q > 1 and the minimal area per chain is higher thus leading to a lower brush penalty.
As noted in the introduction, we limited our analysis to the case of a planar membrane and
neglected any coupling to the elasticity of the membrane. To conclude our discussion we point
out an immediate outcome concerning such coupling. Phase separation within the membrane
was proposed as a mechanism for budding [17]. Within this model, the domain boundary is
located at the neck of the bud. Accordingly, the creation of the neck shortens the length of
the boundary between the domains. The consequent lowering of the boundary free energy is
associated however with an elastic penalty due to the bending of the membrane. The bal-
ance of the boundary penalty, τlR, and the elastic term, 8πκ, determines the size of the bud
which scales as the invagination length, κ/τl, where κ is the bending rigidity of the mem-
brane. When one of the domains is rich in lipids functionalized by polymers, the overspill
effect comes into play and τl is replaced by τ < τl as given by (2) thus causing an increase of
the invagination length.
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