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Abstract. – The self-squeezing states of magnons in an antiferromagnet are studied in
this paper. These particular states allow a reduction in the quantum fluctuations of the spin
components to below the zero-point quantum noise level of the coherent magnon states. The
conditions of achieving magnon self-squeezing states are given by calculating the expectation
values of the spin fluctuations, and a possible detection scheme based on a polarized neutron-
scattering technique is suggested.

The squeezed states of bosons including photons [1], polaritons [2, 3] and phonons [4–9]
have attracted much attention during the past few years. These states are interesting because
they can have lower quantum noise than the vacuum or coherent states. Compared to both
photons and phonons, the elementary excitations of the spin waves, magnons, are also bosons,
and their Hamiltonian in a particle-number representation is similar to that of the photons
or the phonons. Also, the spin vectors are similar to the lattice displacements or the light
field vectors. Therefore, it is possible that the magnon squeezing states exist. Here we study
the properties of the magnon squeezing states and explore the possibility of generating these
states through magnon-magnon interaction. By investigating the dynamical and quantum
fluctuation properties of the spin waves, in analogy with the modulation of quantum noise in
light and lattice waves, we derive the condition of achieving magnon squeezing states.

A common requirement of achieving the squeezing states for the photons or the phonons
is that there are two-mode bosons excited by the external fields with different incident di-
rections [9]. In the antiferromagnet, the spins of all electrons in each unit cell in the crystal
lattices compensate one another (in the equilibrium state in the absence of a magnetic field).
These spins, periodically repeated in all cells, form the magnetic sublattices of the antiferro-
magnet. The external magnetic field with single direction and the internal anisotropy field
can excite two different sub-spin waves or magnons. The two types of magnons interfere with
each other and generate the self-squeezing states.

The magnon self-squeezing states are attractive because they have new statistical and
quantum-mechanical properties and a potential application such as the microwave emission
c© EDP Sciences
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with lower noise. In terms of this effect, we may understand the interaction between atoms
in the antiferromagnet.

In the antiferromagnet, there are two sublattices and each unit cell of the crystal contains
two atoms. Let �Sa represent any atomic spin on one sublattice and �Sb any spin on the other.
The external magnetic field �B is parallel to the z-axis. The Heisenberg Hamiltonian of the
system is [9]

H = |J |
∑
µ,ν

(
�Saµ · �Sbν + �Sbν · �Saµ

) − gβ(B + BA)
∑

µ

Sz
aµ − gβ(B −BA)

∑
ν

Sz
bν , (1)

where B is the strength of the external magnetic field, BA the anisotropy field, β the Bohr
magneton, and J the exchange integrals. The exchange interaction is assumed to be limited
to nearest neighbors of each other.

First of all, we introduce the raising and lowering operators:

S+
iµ = Sx

iµ + iSy
iµ, S−

iµ = Sx
iµ − iSy

iµ (i = a, b) (2)

and then make use of the Holstein-Primakoff substitutions

S+
aµ −→ (2S)1/2aµ, S−

aµ −→ (2S)1/2a+
µ , Sz

aµ −→ S − a+
µ aµ, (3)

for atom µ on sublattice a, and

S−
bν −→ (2S)1/2bν , S+

bν −→ (2S)1/2b+ν , Sz
bν −→ b+ν bν − S, (4)

for atom ν on sublattice b. Finally, we introduce a transformation to spin wave variables
through

ak = N−1/2
∑

µ

ei�k·�Rµaµ, bk = N−1/2
∑

ν

ei�k·�Rνaν , (5)

and the corresponding conjugates. The summations are restricted to the sublattices a and b,
respectively, each of which contain N atoms. Equations (2)–(5) are substituted into (1), and
the Hamiltonian can be rewritten by the creation and annihilation operators ak’s and bk’s as

H = E0 +
∑

k

[
h̄ωaa

†
kak + h̄ωbb

†
kbk + ηk

(
akbk + a†kb

†
k

)]
, (6)

where

E0 = −2N
(
ZS2|J | + gβSBA

)
, h̄ωa = 2ZS|J | + gβ(BA + B),

h̄ωb = 2ZS|J | + gβ(BA −B), ηk = 2ZS|J |γk,

and γk =
∑

s e
i�k·�Rs , here �Rs being a vector connecting an atom with one of its nearest

neighbors, and the sum includes all such vectors.
By solving the Schrödinger equation ih̄∂|t〉

∂t = H|t〉, we can obtain the time-dependent state
vector |t〉 = U |0〉; here |0〉 is the initial state vector, and U = e−

i
h̄ Ht is the time evolution

operator. In terms of the transformation formula

e−
i
h̄ (H0+V )t = e−

i
h̄ H0t exp

[
− i

h̄

∫ t

0

dt1
(
e

i
h̄ H0t1V e−

i
h̄ H0t1

)]
, (7)
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the time evolution operator can be re-expressed as

U = e−i(h̄ωaa†
kak+h̄ωbb†kbk)eξ†

kakbk+ξka†
kb†k , (8)

where

ξ∗k =
ηk

h̄(ωa + ωb)
[
e−i(ωa+ωb)t − 1

]
(9)

and

ξk =
ηk

h̄(ωa + ωb)
[
ei(ωa+ωb)t − 1

]
(10)

are the squeezing factors. We can obtain the time-dependent operators (Heisenberg operators)
as

ak(t) = U−1akU = e−iωat

(
cosh

√
ξ∗kξkak −

√
ξk

ξ∗k
sinh

√
ξ∗kξkb

∗
k

)
, (11)

bk(t) = U−1bkU = e−iωat

(
cosh

√
ξ∗kξkbk −

√
ξk

ξ∗k
sinh

√
ξ∗kξka

∗
k

)
(12)

and the corresponding conjugates.
In analogy to the definition of the photon squeezed states, the self-squeezing state of the

magnons is defined as a particular state in which the fluctuation of some component of the
spins is lower than the one of the vacuum state. In the following, we will calculate the
fluctuation of the x-axis component of the spins and try to find out the condition of achieving
the self-squeezing states. Of course, other components of the spins may be discussed in
similar way.

The fluctuation of the x-axis component of the spins is expressed as
〈
∆S2

x

〉
=

〈
S2

x

〉 − 〈
Sx

〉2 =
∑
µν

〈(
Sx

aµ + Sx
bµ

)(
Sx

aν + Sx
bν

)〉
, (13)

where 〈· · · 〉 denotes an expectation value on the squeezed states. The expectation value of
the x-axis component of the spins is zero, i.e. 〈Sx〉 = 0. Equations (2)–(5), (11) and (12) are
substituted into (13), and we obtain

〈
∆S2

x

〉
=

S

2

∑
k

∑
m

ei�k·�Rm
〈
t
∣∣aka

†
k + a†kak + bkb

†
k + b†kbk + 2

(
akbk + a†kb

†
k

)∣∣t〉 =

=
S

2

∑
k

∑
m

ei�k·�Rm
〈
0
∣∣{ak(t)a†k(t) + a†k(t)ak(t) + bk(t)b†k(t) + b†k(t)bk(t) +

+ 2
[
ak(t)bk(t) + a†k(t)b†k(t)

]}∣∣0〉
. (14)

Therefore we obtain the fluctuation of the x-axis component of the spins

〈
∆S2

x

〉
= S

∑
k

∑
m

ei�k·�Rm

[
1 + 2 sinh2

√
ξ∗kξk − cos

(
ωa + ωb

2
t +

π

2

)
sinh 2

√
ξ∗kξk

]
. (15)
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Fig. 1 – Schematic diagram of the magnon self-squeezing states. The dotted line corresponds to the
function Y = tanh( 2ZS|J|γk

ω
sinωt), and the solid line to the function Y = cos(ωt + π

2
). The hatched

parts are the regions of the self-squeezing states.

The condition of achieving the self-squeezing states is

cos
(
ωa + ωb

2
t +

π

2

)
> tanh

√
ξ∗kξk,

or

cos
(
ωt +

π

2

)
> tanh

2ZS|J |γk

ω
sinωt, (16)

where

ω =
2ZS|J | + gβBA

h̄
. (17)

As shown in fig. 1, the hatched parts are the regions that satisfy the squeezing condition,
while in other regions squeezing states do not exist. The squeezing states can achieve smaller
fluctuation for the spin component during certain time intervals and are therefore helpful for
decreasing quantum noise. Because the squeezing condition is not related to the external
magnetic field, the corresponding states are called self-squeezing states. The self-squeezing
states always occur on alternative half-periods. Their time period

τ =
2πh̄

2ZS|J | + gβB
(18)

is related to the exchange integral and the anisotropy field, which are the physical quantities
that describe material properties. It is helpful to understand the material properties if we
are able to measure the period of occurrence of magnon self-squeezing states. In order to
estimate the order of magnitude of τ , we take the crystal MnF2 as an example. The material
parameters [10] are taken to be |J | = 11.9 meV, Z = 6, S = 1, and BA = 0.88 T, and we
obtain τ = 2.896 × 10−14 s.

The self-squeezing magnons of the antiferromagnet could be detected by a polarized-
neutron scattering technique. Suppose that the neutron polarization is parallel to the x-axis,
and the external magnetic field is parallel to the z-axis. According to the general theory
of neutron scattering, the differential cross-section for the scattering of the neutron by the
antiferromagnet is related to the fluctuation of the spins [11] and proportional to 〈∆S2

x〉.
Therefore, it is possible to observe the periodicity of the self-squeezing states by the neutron
scattering experiment.
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In summary, our calculations have shown that in an antiferromagnet there are magnon
self-squeezing states that can reduce the fluctuation of the spin component. The magnon
self-squeezing states occur periodically with time at T = 0 K, and they represent a basic
characteristic of the antiferromagnet. The mechanism of generating the self-squeezing states
is due to a modulation interaction between two sublattice spins. We may obtain useful infor-
mation about the material properties, such as the exchange integral and the anisotropy field,
by measuring the time periods of the self-squeezing states.
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