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PACS. 75.50.Pp – Magnetic semiconductors.
PACS. 75.40.Gb – Dynamic properties (dynamic susceptibility, spin waves, spin diffusion, dy-

namic scaling, etc.).
PACS. 78.47.+p – Time-resolved optical spectroscopies and other ultrafast optical measure-

ments in condensed matter.

Abstract. – We examine the effect of Coulomb interaction on the mobility and diffusion of
spin packets in doped semiconductors. We find that the diffusion constant is reduced, relative
to its non-interacting value, by the combined effect of Coulomb-enhanced spin susceptibility
and spin Coulomb drag. In ferromagnetic semiconductors, the spin diffusion constant vanishes
at the ferromagnetic transition temperature.

The ability to control inhomogeneous distributions of electrons and holes in semiconductors
is essential to the operation of modern electronic devices. Unlike electron packets in metals,
which spread out very quickly under the action of their own electric field, electron-hole pack-
ets in semiconductors are charge-neutral objects and can therefore be long-lived. The time
evolution of such packets is controlled by a drift-diffusion equation with mobility and diffusion
constants µ and D, as was verified in detail in the classic Haynes-Shockley experiment [1].

Recently, a broader category of possible disturbances, involving inhomogeneous spin dis-
tributions, has come into sharp focus in the context of the emerging field of “spintronics” [2].
Consider, for example, a spin packet consisting of excess up-spin electrons compensated by
a deficiency of down-spin electrons. Such a disturbance can occur in the conduction band
of a metal or of a doped semiconductor [3]. Like an ordinary electron-hole packet this is a
charge-neutral object and can therefore be extremely long-lived (recent experiments measure
a spin relaxation time τs of the order of 10 ns [3,4]). Unlike an electron-hole packet, however,
the disturbance involves carriers of a single polarity —electrons— and therefore evolves with
the mobility and diffusion constants of the conduction band, which are usually larger than
those of the valence band. Indeed, large values of the spin drift mobility µs ∼ 3×103 cm2/V s
and spin diffusion constant Ds ∼ 103 cm2/s have recently been observed in experiments on
n-doped GaAs [4].
c© EDP Sciences
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The qualitative difference between unipolar and bipolar disturbances in semiconductors
has recently been emphasized by Flatté and Byers [5] within the frame of a simple model
in which the electron-electron interaction is treated in the Hartree approximation. In this
letter, we refine their analysis by examining the more subtle effects of exchange and Coulomb
correlation on the mobility and diffusion constant of a spin packet. It will be shown that these
many-body effects have a serious impact on the value of the spin diffusion constant and can be
quantitatively probed in a Haynes-Shockley–type experiment that measures independently the
mobility and the diffusion constant of a spin packet. The two key physical effects are i) the
reduction of the spin stiffness (inverse of the spin susceptibility) due to (mainly) exchange
interactions and ii) the spin Coulomb drag [6] working like friction against the relative motion
of up-spin and down-spin electrons. Both effects tend to reduce the diffusion constant. By
contrast, the spin-packet mobility turns out to be essentially unaffected by interactions.

Under certain conditions, the electron (hole) gas in doped semiconductors may undergo
a ferromagnetic transition. The phenomenon occurs either at very low densities, due to the
Coulomb interaction [7] or, for instance, in GaAs [8,9] under heavy doping with magnetic Mn
impurities. As the ferromagnetic transition temperature Tc is approached the longitudinal
spin stiffness vanishes and so does the spin diffusion constant, which thus exhibits a critical
behavior.

We begin our analysis by assuming, as usual, a linear relationship between the number
current densities �Jα(�r) (α =↑ or ↓) and the gradient of the local electro-chemical potentials
ψα(�r) = φ(�r) − (1/e)∂f(n↑, n↓, T )/∂nα, where φ(�r) is the electrostatic potential, e is the
absolute value of the electron charge, and f(n↑, n↓, T ) is the free energy per unit volume of a
homogeneous interacting electron gas at the local spin densities nα(�r) and temperature T [10].
This leads to the equation

e �Jα(�r) =
∑

β

(
σαβ(�r)�∇φ(�r) − eDαβ(�r)�∇nβ(�r)

)
, (1)

where σαβ is the homogeneous conductivity matrix, calculable from the Kubo formula, and
the diffusion matrix Dαβ is given by the generalized Einstein relation

e2Dαβ =
∑

γ

σαγSγβ , (2)

where

Sαβ =
∂2f(n↑, n↓, T )

∂nα∂nβ
(3)

is the static spin-stiffness matrix —minus the inverse of the spin susceptibility matrix.
On a formal level the main effect of the Coulomb interaction is the appearance of non-

vanishing off-diagonal elements of the conductivity and spin-stiffness matrices. These off-
diagonal matrix elements have a simple physical interpretation. σ↑↓ �= 0 implies that an
electric field acting only on the up-spin electrons must necessarily drag along a current
of down-spin electrons. Similarly, S↑↓ �= 0 means that the chemical potential of up-spins
∂f(n↑, n↓, T )/∂n↑ is a function of both up and down spin densities. In addition the Coulomb
interaction significantly modifies the values of the diagonal elements of these matrices, as we
shall see momentarily.

Let us apply eq. (1) to the calculation of the time evolution of a spin packet obtained
by injecting an excess spin density ∆m(�r, 0) = ∆Mδ(�r) near the origin at time t = 0. We
denote by m(�r, t) = n↑(�r, t) − n↓(�r, t) the net spin density at point �r and time t, by m(0) =
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n
(0)
↑ − n

(0)
↓ the uniform value of the spin density at thermodynamic equilibrium, and by

∆m(�r, t) ≡ m(�r, t) − m(0) the excess spin density following spin injection. Similarly, we
denote by n(�r, t) = n↑(�r, t) + n↓(�r, t) the total electron density and by n(0) and by ∆n(�r, t)
the equilibrium and the excess density, respectively.

The solution of the problem requires as additional inputs the continuity equations for the
number and spin densities:

∂∆n(�r, t)
∂t

= −�∇ · �J(�r, t) , (4)

∂∆m(�r, t)
∂t

= −∆m(�r, t)
τs

− �∇ · �Jm(�r, t), (5)

where �Jm = �J↑ − �J↓ is the spin current density and τs is the spin relaxation time, which is
very long [3, 4].

In practice, following the procedure familiar in the theory of bipolar carrier packets [11],
we first combine eqs. (4), (5) and (1) to eliminate the �∇ · �E term related to the Poisson
equation, and then impose the local charge neutrality constraint [12]

∆n↑(�r, t) = −∆n↓(�r, t). (6)

This yields the result

∂∆m(�r, t)
∂t

= −∆m(�r, t)
τs

+ Ds∇2∆m(�r, t) +

+µs
�E · �∇∆m(�r, t) , (7)

where

µs =
(n↑ + n↓)σ̃↑σ̃↓
n↑n↓(σ̃↑ + σ̃↓)

(8)

and

Ds =
σ̃↑D̃↓ + σ̃↓D̃↑

σ̃↑ + σ̃↓
(9)

are the effective mobility and diffusion constants [13], and �E is an externally applied electric
field. Equations (8) and (9) reduce to the expressions presented in [5] in the non-interacting
case. The constants σ̃α and D̃α are presently given by

σ̃α = σαα + σαᾱ ,

D̃α = Dαα − Dαᾱ. (10)

The fact that the conductivities enter a spin symmetric combination while the diffusion
constants are in a spin antisymmetric combination reflects the fact that the electrostatic field
has the same sign for both spin components, while the density gradients have opposite signs
(see (6)).

The solution of eq. (7) in a homogeneous and isotropic liquid is

∆m(�r, t) =
∆Me−t/τs

(4πDst)3/2
e−

|�r+µs �Et|2
4Dst . (11)

Thus, we see that a Haynes-Shockley–type experiment can in principle determine µs and
Ds independently, provided that τs is sufficiently long.
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Let us now proceed to the calculation of µs and Ds. The necessary inputs are the con-
ductivity and the spin stiffness matrices. The conductivity matrix is best computed from
its inverse, namely the resistivity matrix ραβ whose general structure is determined by the
principle of Galilean invariance and Newton’s third law. The explicit form of ραβ , extracted
from eq. (3) of ref. [6], is

ρ =

(
m∗

n↑e2τ↑
− n↓

n↑
ρ↑↓ ρ↑↓

ρ↑↓ m∗
n↓e2τ↓

− n↑
n↓

ρ↑↓

)
. (12)

Here τα are the combined electron-impurity and electron-phonon scattering times, usually of
the order of 10−3-10−4 ns, m∗ is the effective mass of the carriers, and ρ↑↓ is the spin drag
transresistivity calculated in ref. [6]. After computing σαβ = [ρ−1]αβ the diffusion matrix is
straightforwardly obtained from eq. (2), and µs, Ds are calculated from eqs. (8) and (9). The
algebra is greatly simplified by the reasonable assumption that the scattering times for the
two spin components are not too different, i.e., τ↑ = τ↓ = τD [14]. Under this condition, the
result is

µs =
eτD

m∗ (13)

and
Ds =

µskBT

e

S

Sc

1
1 − ρ↑↓/ρD

, (14)

where S = ∂2f(n,m, T )/∂m2 is the spin stiffness, Sc = kBTn/4n↑n↓ is the Curie spin stiffness
of an ideal classical gas, and ρD = m∗/ne2τD is the Drude resistivity.

Equation (13) tells us that the mobility of the packet is not explicitly modified by the
Coulomb interaction and in fact coincides with the ordinary homogeneous mobility. Strictly
speaking, this result is only valid under the assumption that up-spin and down-spin electrons
have equal mobilities and thus drift at the same speed in an applied electric field. Coulomb
interactions, being Galilean-invariant, cannot change the total momentum of such a uniformly
drifting electron gas.

The situation is completely different for the diffusion constant. As the spin packet spreads
out, the up- and down-spin currents are directed in opposite directions and friction arises: for
this reason the expression for Ds contains the spin-drag resistivity as a factor that reduces the
numerical value of Ds. In addition, the Coulomb interaction together with the Pauli exclusion
principle reduces the energy cost of spin-density fluctuations (i.e., the spin stiffness) further
decreasing the rate of diffusion of a spin packet.

Figure 1 presents the necessary ingredients to calculate Ds. Figure 1a shows that ρ↑↓ —a
negative number— vanishes at low temperature as (T/TF)2 peaking at a temperature of the
order of the Fermi temperature TF. As the inset illustrates, the prefactor 1/(1− ρ↑↓/ρD) (see
eq. (14)) displays a marked dependence on the sample mobility, increasing with the latter.
Figure 1b shows S rescaled by its non-interacting value Sni and its behavior at the onset of
the ferromagnetic instability. We evaluated S numerically starting from the work of Tanaka
and Ichimaru [15] where the free energy density is calculated as a function of temperature,
density, and spin polarization, by means of a self-consistent integral equation approach that
satisfies the thermodynamic sum rules.

In fig. 2 we plot Ds/Dc, where Dc = µskBT/e is the classical non-interacting diffusion
constant, for n-doped GaAs in a range of densities that are relevant to the experiments of
ref. [4]. The solid line corresponds to our full-interacting calculation, while the dashed line
to the non-interacting case. We see that the interaction correction is quite significant, and
reduces the value of Ds as expected. Despite this reduction, Ds is still considerably larger
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Fig. 1 – (a) Transresistivity ρ↑↓ vs. the reduced temperature T/TF for typical semiconductor pa-
rameters. The inset shows the behavior of the factor 1/(1 − ρ↑↓/ρD) for three different mobilities:
µ = 102 cm2/Vs (A), µ = 3 × 103 cm2/Vs (B), µ = 104 cm2/Vs (C). (b) Spin stiffness S vs. T/TF.
The density is n = 4.2 × 1011 cm−3 for the lower curve and increases by a factor 10 for each line
starting from the bottom. The cusps represent the onset of ferromagnetism.

than Dc, consistently with experimental observations. These results show that the effect of
the reduced spin stiffness dominates at low and intermediate temperature, while the spin drag
contribution dominates at high temperature (see inset of fig. 2).

In the non-degenerate limit T � TF(n) we find that Ds/Dc approaches 1. In the non-
interacting theory [5] this limit is approached from above because the leading correction to
the spin stiffness coming from the quantum kinetic energy is positive: Sni = Sc[1+λ3

Tn/2
√

2],
where λT is the de Broglie thermal wavelength at temperature T . In the interacting theory
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Fig. 2 – The interacting diffusion constant of a spin-packet (I) and its non-interacting approximation
(NI) (rescaled by Dc) vs. density for different temperatures. The inset shows the comparison with
the value obtained considering interactions only through the spin Coulomb drag effect (D). In all
the calculations the dielectric constant of the semiconductor is ε = 12 and the mobility is µ =
3 × 103 cm2/Vs.
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Fig. 3 – (a) The diffusion constant of a spin packet vs. temperature in a low-density electron gas with
no magnetic impurities. (b) Same as (a) for an electron gas of typical density n = 1.2× 1019 cm−3 in
a semiconductor doped with magnetic impurities (nI and SI are the impurity concentration and spin,
respectively).

instead, the leading correction to Ds is due to the spin Coulomb drag term and it is negative.
In fact, for T � TF(n), ρ↑↓/ρD ∼ [n/(kBT )3/2] ln(n/(kBT )2), and the logarithmic term dom-
inates over corrections entering the spin stiffness in both the n → 0 and T → ∞ limits. Due
to interactions, Ds/Dc → 1 from below always.

A very interesting feature of eq. (14) is the possibility of large variations in Ds when the
electron gas undergoes a ferromagnetic transition. From the curves in fig. 1b and fig. 3 we see
that S (interpreted as longitudinal spin stiffness in the ferromagnetic phase) and Ds vanish at
the transition temperature Tc. For T < Tc, Ds/Dc increases at first, due to the sharp increase
in spin stiffness (see fig. 1), but then begins to saturate and tends to 1 as full polarization sets
in [16].

In an ordinary electron liquid, the ferromagnetic transition is predicted to occur only at
extremely low densities [7]. There is, however, an interesting variant: semiconductors doped
with magnetic impurities (Mn) can undergo a ferromagnetic transition at rather high carrier
densities [9,17], n ∼ 1020 cm−3 for (Ga, Mn)As, and temperatures as large as 110 K [9]. Our
theory can be extended to such materials, but, for the sake of clarity, we shall present this
extension in a longer paper. Here we simply remark that in a simple mean field theory, such
as that of ref. [18], the calculated value of Ds/Dc for realistic values of the parameters has the
form shown in fig. 3b, where, as in the intrinsic ferromagnetic case, Ds vanishes at Tc [19].

In conclusion, we have demonstrated that a Haynes-Shockley experiment measuring Ds

and µs for a unipolar spin packet would be a sensitive probe of many-body effects such as
the spin-Coulomb drag and the Coulomb enhancement of the spin susceptibility, and would
provide a strong signature of a ferromagnetic ordering transition. Conversely, many-body
effects must be taken into account in a quantitative theory of spin diffusion.

∗ ∗ ∗
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