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PACS. 85.85.+j – Micro- and nano-electromechanical systems (MEMS/NEMS) and devices.

Abstract. – Effects of a coupling between the mechanical vibrations of a quantum dot placed
between the two leads of a single-electron transistor and coherent tunneling of electrons through
a single level in the dot has been studied. We have found that for bias voltages exceeding
a certain critical value a dynamical instability occurs and mechanical vibrations of the dot
develop into a stable limit cycle. The current-voltage characteristics for such a transistor were
calculated and they seem to be in reasonably good agreement with recent experimental results
for the single-C60-molecule transistor by Park et al. (Nature 407 (2000) 57).

Introduction. – Nanoelectromechanics [1,2] is a new, quickly developing field in condensed-
matter physics. A coupling between strongly pronounced mesoscopic features of the electronic
degrees of freedom (such as quantum coherence and quantum correlations) and degrees of free-
dom connected to deformations of the material produces strong electromechanical effects on
the nanometer scale. The mesoscopic force oscillations in nanowires [3–5] observed a few
years ago is an example of such a phenomenon. Investigations of artificially made nanome-
chanical devices, where the interplay between single-electron tunneling and a local mechanical
degree of freedom significantly controls the electronic transport, is another line of nanoelec-
tromechanics [6–15]. For one of the nanomechanical systems of this kind, the self-assembled
single-electron transistor, a new electromechanical phenomenon —the shuttle instability and
a new so-called shuttle mechanism of the charge transport were recently predicted in [12].
It was shown that a small metallic grain attached to two metallic electrodes by elastically
deformable links breaks into oscillations if a large enough bias voltage is applied between the
leads. For the model system studied in [12], it was also shown that a finite friction is required
for the oscillation amplitude to saturate and for a stable regime of oscillations to develop.

An essential assumption made in [12] is that the relaxation mechanisms present are strong
enough to keep the electron systems in each of the conducting parts of the transistor in
local equilibrium (as assumed in the standard theory of Coulomb blockade [16, 17]). Such
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Fig. 1 – Model system consisting of a movable quantum dot placed between two leads. An effective
elastic force acting on the dot from the leads is described by the parabolic potential. Only one single
electron state is available in the dot and the non-interacting electrons in each have a constant density
of states.

relaxation, which destroys any phase coherence between electron tunneling events, allows a
description of the whole electronic kinetics by means of a master equation for the occupation
probabilities of the dot. It is clear that such an incoherent approach must fail if the size
of the grain is small enough. Firstly, a decrease of the grain size results in a decrease of
its mass and, consequently, in an increase of the frequency of the mechanical vibrations,
which for nanometer-size clusters is of the order of 0.1–1THz and might exceed the electron
relaxation rate in the grain. Secondly, the electron energy level spacing in a nanometer-size
grain δ ∼ εF/N , (N is the number of electrons) can be of the order of 10K and exceed the
operational temperatures. In this situation the discreteness of the energy spectrum can be very
important. What is more, a possibly strong tunneling-induced coupling between electronic
states in the grain and in the leads, which results in large quantum fluctuations of the charge
in the grain, must be included.

For all of the above reasons a new approach is needed for a description of the electron trans-
port through a nanometer-size movable cluster or quantum dot. The non-trivial question then
arises whether or not the coherent electron tunneling through a movable dot causes any elec-
tromechanical instability. Such a question is of notable practical significance in view of the
recent experiment by Park et al. [7], where the current through so-called single-C60-molecule
transistors was measured and anomalies —including a few equidistant step-like features— in
the I-V characteristics observed. This current steps were interpreted in [7] as a manifesta-
tion of the coupling between electron tunneling and the center-of-mass vibrational degree of
freedom of the molecule.

Theoretical model. – To investigate the influence of the above electromechanical cou-
pling, we consider a model system consisting of a movable quantum dot placed between two
bulk leads. An effective elastic force acting on the dot due to interaction with the leads is de-
scribed by the parabolic potential presented in fig. 1. We assume that only one single-electron
state is available in the dot and that the electrons in each lead are non-interacting with a
constant density of states. At the same time we treat the motion of the grain classically. The
Hamiltonian for the electronic part of the system is

H =
∑
α,k

(εαk − µα)a†
αkaαk + εd(t)c†c +

∑
α,k

Tα(t)
(
a†

αkc + c†aαk

)
. (1)

Here TL,R = τL,R exp[∓x(t)/λ] is the position-dependent tunneling matrix element, εd(t) =
ε0 − Ex(t) is the energy level in the dot shifted due to the voltage-induced electric field
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E/e = χV , χ is a parameter characterizing the strength of the electrical field as a function of
the bias voltage V , e < 0 is the electron charge, x measures the displacement of the dot, a†

αk

creates an electron with momentum k in the corresponding lead, α = L,R is the lead index, c†

creates an electron in the dot and λ is the characteristic tunneling length [12]. The first term
in the Hamiltonian describes the electrons in the leads, the second, the movable quantum dot
and the last term, tunneling between the leads and the dot.

The evolution of the electronic subsystem is determined by the Liouville-von Neumann
equation for the statistical operator ρ̂(t),

i∂tρ̂(t) =
[
Ĥ, ρ̂(t)

]
−, (2)

while the center-of-mass motion of the dot is governed by Newton’s equation,

ẍ + w2
0x = F/M. (3)

Here w0 =
√

k/M , M is the mass of the grain, k is a constant characterizing the strength
of the harmonic potential, F = −〈∂Ĥ/∂x〉 and 〈•〉 = Tr{ρ̂(t)•}. The force F on the RHS of
eq. (3) is due to the coupling to the electronic subsystem and consists of two terms,

F (t) = −iEG<(t, t) + 2λ−1
∑
α,k

(−1)αTα(t) Im
[
G<

αk(t, t)
]
, (4)

where G<(t, t′) ≡ i〈c†(t′)c(t)〉, G<
αk(t, t′) ≡ i〈a†

αk(t′)c(t)〉 are the lesser Green functions, and
α = 0 (1) for the left (right) lead. The first term describes the electric force that acts on the
charge in the dot; the second term is an exchange force, which appears due to the position
dependence of the tunneling matrix elements TL,R. The force F depends on the correlation
functions G<(t, t) and G<

αk(t, t), which can be computed exactly in the wide-band limit (ρα =
const) by using the Keldysh formalism [18].

Following the standard analysis [19] we express the correlation function G<
αk(t, t) in terms

of the Green functions of the dot,

G<
αk(t, t′) =

∫
dt1Tα(t1)

{
Gr(t, t1)g<

αk(t1, t′) + G<(t, t1)ga
αk(t1, t′)

}
. (5)

Here Gr is the retarded Green function of the dot and g
a(<)
αk is the advanced (lesser) Green func-

tion of the leads for the uncoupled system. The Dyson equation for the retarded (advanced)
Green function has the following form: Gr(a) = gr(a) + gr(a)Σr(a)Gr(a), where Σr(a)(t1, t2) =∑

α,k Tα(t1)g
r(a)
α,k (t1, t2)Tα(t2). In the wide-band limit Σr(a)(t1, t2) ∝ δ(t1 − t2) and this Dyson

equation can be solved exactly. The lesser Green function G< is given by the Keldysh equation
G< = GrΣ<Ga, where Σ<(t1, t2) =

∑
α,k Tα(t1)g<

αk(t1, t2)Tα(t2).
As a result, we obtain a general expression for the force F of the form

F (t) =
∑
α

ρα

∫
dεfα(ε)

{
E|Bα(ε, t)|2 + 2

(−1)α

λ
Tα(t)Re[Bα(ε, t)]

}
, (6)

where

Bα(ε, t) = −i

∫ t

−∞
dt1Tα(t1) exp

[
i

∫ t

t1

dt2

[
ε − εd(t2) + i

Γ(t2)
2

]]
.

Γ(t) = 2π
∑

α ραT 2
α(t), ρα is the density of states in the corresponding lead and fα(ε) =

[exp[β(ε − µα)] + 1]−1. It is worth mentioning that eq. (6) is valid for arbitrary values of the
tunneling matrix elements.

An important question is now whether or not the mechanical stability of the transistor
configuration is affected by coherently tunneling electrons.
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Instability. – In order to investigate the stability of the equilibrium position of the
dot, we expand the RHS of eq. (3) to first order with respect to the displacement: F (t) =∫ t

−∞ dt′D(t − t′)x(t′). After a Fourier transformation of the obtained equation, we get the
following dispersion equation for the frequency:

w2 − (
w2

0 − w2
1

)
= −Dw/M, (7)

where

Dw = −
∫

dε

2π

∑
α

Γαfα

{
RαG+

w + R∗
αG−

−w

}
,

Rα =
{∣∣∣∣EG+

0 +
(−1)α

λ

∣∣∣∣
2

− ig

[
E|G0|2 + G+

0

(−1)α

λ

]}
,

w2
1 =

∑
α Γα

∫
dεfα Re[G+

0 ]/(πλ2M), Γα = 2πρατ2
α, Γ =

∑
α Γα, G±

w(ε) = [ε+w−ε0±iΓ/2]−1

and g = (ΓL − ΓR)/λ.
The criterion for instability is that the frequency ω has a positive imaginary part. When

Γ/(Mw2
0λ

2) � 1 and Eλ/(
√

w2
0 + Γ2) � 1 (the case of weak electromechanical coupling)

we obtain that Im[w] ≈ − Im[Dw0 ]/(Mw0) . From now on we consider only the case of weak
electromechanical coupling. An analytical analysis cannot be performed in the general case,
but for a large symmetrically applied bias voltage and zero temperature one can show that
Im[Dw0 ] is negative:

Im[Dw0 ] 	 − 4Ew0

λ(w2
0 + Γ2)

ΓLΓR

Γ
. (8)

The instability that follows from eq. (8) is in contrast with the behavior at low voltages
where it can be shown that Im[Dw0 ] is positive. Therefore, a finite threshold voltage for
the instability exists in the system. A simple expression for the threshold voltage can be
found for a symmetric junction in the case of weak tunneling under the above conditions:
eVc = 2(ε0 + w0).

Under the condition of weak electromechanical coupling, the displacement x(t) of the dot
can be represented in a harmonic oscillation form A(t) cos(wt + φ(t)) with an amplitude A(t)
and a phase φ(t) that slowly vary on the scale of w−1

0 . By averaging over the fast harmonic
oscillations, one can get the following equation for the evolution of the amplitude (see for
example [12]):

dA2

dt
=

W (A2)
Mπw0

. (9)

Here W (A2) =
∮

dxF is the work done by the force F on the dot during one period of
oscillation with a constant amplitude A. We conclude from eq. (9) that the stable regime of
oscillations corresponds to W = 0 and dW (A2)/dA2 < 0. Typical W (A2)-curves are depicted
in fig. 2 for the parameters taken from the experiment described in [7]. When an applied
voltage is lower than the threshold voltage, the work W is negative for all amplitudes. This
implies that the equilibrium position of the grain is stable. When the voltage is higher than
the threshold voltage, the function W (A2) is positive for 0 < A < Ac(V ) (which corresponds
to a slow increase of the oscillation amplitude), negative for A > Ac(V ) (which corresponds
to a slow decrease of the amplitude) and equal to zero at A = Ac(V ). This means that
when the applied voltage exceeds the threshold value the amplitude of the oscillation slowly
increases until it develops into a stable limit cycle with amplitude Ac(V ). As one can see from
fig. 2, the amplitude of the limit cycle is of the order of λ ∼ 0.1 nm and is considerably larger
than the amplitude of zero-point oscillations of the grain, which for the C60 molecule in the
experiment [7] is approximately 3 pm.
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Fig. 2 – The energy W pumped into the mechanical degree of freedom during one period of oscillation
for different values of the applied voltage V : w0 = 5 meV, T = 0.13 meV, ε0 = 6meV, Γ = 1 µeV and
ΓR/ΓL = 9.

Fig. 3 – I-V curves for different values of the parameter χ which characterizes the strength of the
electric field between the leads for a given voltage: w0 = 5meV, T = 0.13 meV, ε0 = 6 meV, and
Γ = 2.3 µeV. Best fit to [7] is obtained for an asymmetric coupling to the leads; here we use ΓR/ΓL = 9.

Current. – In the regime where the stable limit cycle oscillations have developed the
vibration-induced inelastic tunneling of electrons can significantly contribute to the current.
The time-averaged current through the system in the stable regime where oscillations of the
limit cycle amplitude Ac(V ) and frequency w0 =

√
k/M have developed, has the following

form:

I = − eΓL

2πT

∫ T

0

dt

∫
dε

{
e−

2x
λ

∑
α

Γαfα

∣∣∣∣Bα

τα

∣∣∣∣
2

+ 2e−
x
λ fL Im

[
BL

τL

]}
, (10)

where x(t) = Ac cos(w0t) and T = 2π/w0 is the period of oscillations. This expression is valid
under the same general conditions as eq. (6).

Under the condition that the effective level broadening Γ̃ � w0 (where Γ̃ = ΓJ0(i2Ac/λ))
eq. (10) can be simplified to

I ≈ eΓLΓR

Γ

+∞∑
m=−∞

{fL,mξ2m
L − fR,mξ2m

R }J2
m(Acη), (11)

where fα,m = fα(ε0 + mw0), η =
√

(E/w0)2 − λ−2, ξα = −[(E/w0) + (−1)α/λ]/η and Jm

are Bessel functions of the first kind. The typical I-V curves are shown in fig. 3, where we
assume that voltage has been applied only to the left lead (according to the experiment [7]).
The main characteristic feature of all obtained I-V curves is that they show only a few
equidistant steps which are followed by stepless behavior of the curves. The distance between
the steps is given by the vibrational frequency w0 and their heights can vary depending on
the parameters. The steps following the first one is due to the development of a vibrational
instability and a transition into the associated charge transfer regime. The obtained behavior
of the I-V curves is in reasonably good agreement with the experimental data [7]. Best fit to
the published experimental I-V curves is obtained for an asymmetric coupling to the leads
(ΓR/ΓL ≈ 9). When the ratio ΓR/ΓL decreases both the vibration-induced current jumps and
a high-voltage slope of the I-V curve increase deviating from the experimental data.
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An alternative theoretical description of the experiment based on a photon-assisted
tunneling-like picture [15] also shows reasonable agreement with the experimental data [7].
Therefore it is difficult to conclude with certainty that it is the above instability which is re-
sponsible for the specific features observed in the experiment. Further experiments are needed
to clarify the picture. Such experiments may involve an investigation of the charge fluctuation
on the grain or of current noise.

Conclusion. – We have studied the effect of a coupling between coherent tunneling of
electrons through a single quantized energy level in the central island —or dot— of a single-
electron transistor and vibrations of the dot. We have found that for bias voltages exceeding
a certain critical value a dynamical instability occurs and mechanical vibrations of the center
of mass of the dot develop into a stable limit cycle. The effect of this vibrations on the current
through the system were also studied. I-V characteristics calculated in our model were found
to be in reasonably good agreement with recent experimental results of Park et al. [7] for the
single-C60-molecule transistor.
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