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Abstract. – We consider three spinless fermions free to move on 2d square lattice with periodic
boundary conditions and interacting via a U/r Coulomb repulsion. When the Coulomb energy
to kinetic energy ratio rs is large, a rigid Wigner molecule is formed. As rs decreases, we show
that melting proceeds via an intermediate regime where a floppy two-particle molecule coexists
with a partially delocalized particle. A simple ansatz is given to describe the ground state of
this mesoscopic solid-liquid regime.

Ordered arrays of charged particles with long-range Coulomb repulsion have been a con-
tinuous subject of interest in various branches of physics, including colloidal suspensions,
ion rings, atomic-ion Wigner crystals, quantum computers, biophysics, plasmas, electrons
deposited on liquid-helium surfaces, charges created in semiconductor or organic field effect
devices. These arrays can melt, exhibiting a transition from collective towards independent-
particle motion, either as a function of the temperature (classical melting) or as a function
of the charge density (quantum melting) at very low temperature. In principle, the quantum
melting can be observed using electrons trapped in quantum dots [1,2] or cooled ions confined
in radio frequency traps [3]. Very often, a parabolic confinement is imposed. When the con-
finement is weak and at a sufficiently low temperature, the Coulomb repulsion dominates the
kinetic energy, the charges are ordered and a Wigner molecule is formed. If the confinement
becomes stronger, the kinetic energy dominates the Coulomb repulsion, the molecule melts and
one gets a Fermi system of weakly interacting particles. In a parabolic 2d trap, the molecule
consists of well-separated shells. Both for the classical melting [4] (achieved by increasing the
temperature for a given trap) and for the quantum melting [5] (achieved at zero temperature
by reducing the size of the trap), it has been observed that melting proceeds in two stages:
first, neighboring shells may rotate relative to each other while retaining their internal order;
second, the shell broadening leads to radial melting. Wigner quantum crystallization in 2d
electron dots is characterized by two distinct —radial and orientational— ordering transitions.
However, a parabolic trap does not yield a uniform charge density, the low-density shells at
the edges could order before the high-density part in the bulk, and this two-stage melting
c© EDP Sciences
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could be an artifact due to the interplay between surface and bulk orderings. It is therefore
interesting to study if a multi-stage melting persists in a system of uniform charge density, for
instance when the charges are confined on a 2d torus. One has then to take into account the
translational symmetry of a 2d torus instead of the rotational symmetry of a parabolic trap.

Another important issue can be mentioned, assuming that insights gained through inves-
tigations limited to small systems provide the foundations for understanding larger systems.
Long ago, it was suggested by Andreev and Lifshitz [6] that low-temperature localized defects
change into excitations that move practically freely through a crystal. As a result, the number
of sites of a quantum crystal may be smaller than the total number of particles present in
the system for intermediate couplings, such a crystal being neither a solid, nor a liquid. Two
kinds of motion are possible in it; one possesses the properties of motion in an elastic solid,
the second possesses the properties of motion in a liquid.

An intermediate regime of melting was detected using N = 4 spinless fermions in a L×L
lattice, and it was observed [7, 8] that a combination of a few plane waves and site orbitals
was able to describe it, suggesting a liquid-solid regime consistent either with a scenario à la
Andreev-Lifshitz, or with a possible quantum liquid-crystal regime [9, 10]. This intermediate
regime was shifted to lower ratios rs when site disorder was included. Many signatures of a
novel ground state (GS) were observed for intermediate couplings, considering the structure
[11] of the persistent currents when the torus was pierced by an Aharonov-Bohm flux, the
statistics [9] of its low-energy excitations, the failure [8] of the Hartree-Fock approximation to
describe the persistent currents above a first ratio rF

s , the suppression of the same currents
above a higher ratio rW

s , the GS magnetization [12] when the spin degrees of freedom were
included. Moreover, it was noticed in ref. [11] that the ratios rF

s < rs < rW
s , where the novel

mesoscopic GS was observed, were consistent with those where transport measurements using
dilute electron gases in 2d field effect devices [13,14] indicate the puzzling possibility of a novel
2d metal.

The purpose of this work is to reveal the exact nature of the intermediate mesoscopic
GS and to describe it with a simple wave function, considering N = 3 spinless fermions with
U/r Coulomb repulsion in a L×L square lattice with periodic boundary conditions. Using the
operators c†j (cj) , ck (c†k) which create (destroy) a spinless fermion either at the lattice site j=
(jx, jy) or in a plane-wave state of momentum k=(kx, ky) of this lattice, the Hamiltonian reads

H = −t
∑
〈j,j′〉

c†jcj′ +
U

2

∑
j,j′
j 6=j′

njnj′

dj,j′
=
∑
k

εkc
†
kck +

∑
k,k′,q

U(q)c†k+qc
†
k′−qck′ck. (1)

nj = c†jcj , dj,j′ is the shortest distance between sites j and j′, εk = −2t(cos kx + cos ky)
and U(q) = U/(2L2)

∑
j cos(qj)/d0,j . The Coulomb energy to kinetic-energy ratio rs =

U/(2t
√
πne) for a filling factor ne = N/L2. The operators ck and cj are related by the

usual Fourier transform
ck =

1
L

∑
j

e−i(kj)cj . (2)

In the eigenbasis of the non-interacting system (eigenvectors c†k1
c†k2
c†k3
|0〉, |0〉 being the

vacuum state), the Hamiltonian matrix is block-diagonal, each block being characterized by
the same conserved total momentum K =

∑3
i=1 ki. Moreover, only the non-interacting states

having in common one k out of three can be coupled by the interaction inside a K sub-block.
Therefore, each K sub-block is a sparse matrix which can be exactly diagonalized using the
Lanczos algorithm when L is small enough.
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In the large-coupling limit (rs →∞), the eigenstates correspond to rigid Wigner molecules.
For a localized center of mass, the charges would be simply located on three lattice sites a, b
and c, the location of those sites minimizing the electrostatic energy. However, translational
invariance implies a delocalization of the center of mass in a plane-wave state of momentum
K, and the Wigner molecule wave functions become

|Ψ〉 =
1
L

∑
j

ei(Kj)c†j+ac
†
j+bc

†
j+c |0〉 . (3)

For a given shape (a, b, c) of the three-particle molecule, one has three well-defined inter-
particle spacings dmin ≤ dint ≤ dmax. The electrostatic energy becomes U(d−1

min + d−1
int + d−1

max)
while the kinetic energy ∝ teff (center-of-mass effective band width) → 0 as rs → ∞. For
some arbitrary values of K and for some molecular shapes of low electrostatic energy, we
have decreased rs and followed the corresponding levels, ignoring possible level crossings with
other levels of different K and of different molecular shape. Two examples calculated using
a L = 8 lattice are shown in fig. 1, revealing the generic scenario for the melting of a three-
particle Wigner molecule. If one considers the change of the relative fluctuations ∆d/ 〈d〉 as
one increases rs, one can see both for dmin and dmax a crossover from a weak-coupling behavior
where the fluctuations are large (the d are not well defined) towards a large-coupling behavior
where the fluctuations become negligible (the d become well defined). The weak- (strong-)
coupling limits can be described using U/t (t/U) perturbative expansions. For instance, the
large-coupling behavior of the Wigner molecule is given at first order of a t/U expansion by

|Ψ(1)〉 = |Ψ〉+
12∑
α=1
α 6=0

t

∆Eα
|Ψα〉 , (4)

where the |Ψα〉 label the Wigner molecules of same K obtained by moving one of the sites
a, b, c of |Ψ〉 by one lattice spacing, ∆Eα ∝ U being the corresponding changes of electrostatic
energy. This gives the t/U decays of the three ∆d/ 〈d〉 indicated in fig. 1.

The main point to notice is the clear separation between the crossover ratios r∗s (indicated
by the arrows in fig. 1) characterizing dmin and dmax. As one can see in the data, there are
relatively large intervals of intermediate couplings where dmin is well defined while dmax is
not, giving rise to an intermediate behavior for dint. This tells us that the generic melting of
a three-particle molecule proceeds also in two stages, if one considers a 2d system of uniform
density, as had been shown using 2d parabolic traps. The intermediate regime of melting
consists of a floppy two-particle molecule co-existing with a third delocalized particle.

We now study the ground states (GSs) of the three-body problem. The GS momenta and
degeneracies depend on L, as the possible existence of GS level crossings. For simplicity, let
us consider the case where L is even. At U = 0, one has a sixfold GS degeneracy which
is partially removed by an infinitesimal U , the energy of a set of four states with momenta
K = (±2π/L,±2π/L) and K = (±2π/L,∓2π/L) becoming different to those of the two
K = 0 states. Using a U/t expansion, one finds that the GSs remain in the first set for L ≤ 6
while they go into the second set for L ≥ 8. At t = 0, the low-energy Wigner molecules are L2

triangles (dmin = dint = L/2, dmax = L/
√

2) having L2/4 different locations of their centers of
mass and 4 different orientations. This L2 degeneracy is removed when one turns on t. The
energies E0(K) of the L2 first levels are given when t/U → 0 by

E0(K) ≈ A− 2teff (cosKx + cosKy) + 2reff (cos(KxL/2) + cos(KyL/2)) , (5)
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Fig. 1 – Left: scheme of two low-energy Wigner molecules in the limit rs →∞ and of total momenta
K for L = 8. Right: corresponding relative fluctuations ∆d/ 〈d〉 of the three particle spacings as a
function of rs. Smallest (continuous line), intermediate (dash-dotted line) and largest (dashed line)
spacings. The thin dotted lines give the t/U perturbative behaviors. The arrows indicate the two
crossover ratios r∗s .

where A is aK-independent energy, teff ∝ t(t/U)N−1 is the effective center-of-mass band width
while reff ∝ t(t/U)L/2−1 is the effective band width coming from single-particle motions which
couple triangles of the same center of mass but of different orientations (L/2 one-particle
hops). For L ≥ 8, teff � reff , one has a non-degenerate K = 0 GS when t/U → ∞, and
consequently a GS level crossing as rs increases inside the K = 0 subspace between the two
weak-coupling GSs and the single large-coupling GS. For L = 6, reff and teff are both ∝ t3/U2,
the GSs keep as rs varies their momenta K = (±2π/L,±2π/L) and K = (±2π/L,∓2π/L)
(fourfold degeneracy) and no GS level crossing occurs. Hereafter, we study the L = 6 GS of
momentum K = (2π/6, 2π/6). This allows us to avoid the complications coming from the
GS level crossing for L ≥ 8. However, as shown by the previous examples, our results will be
relevant to generically describe the multi-stage quantum melting of aN = 3 low-energy Wigner
molecule if one continuously follows a given level from large couplings towards weak couplings.
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Fig. 2 – Left: scheme of an x-oriented partially melted triangular molecule (x-PMTM) for L = 6. The
arrows give configurations allowed by a partial t/U expansion of the 2PWM. Right: GS projections
Px(K, kx = 0) (solid line) Px(K, kx = 2π/3) (dash-dotted line), Px(K, kx = −2π/3) (dotted line) over
x-PMTMs of momentum kx. P (K, kx = 0, ky = 0) (upper thin dashed line) gives the total projection
over the PMTM of momenta kx = 0 and ky = 0. Total momentum K = (2π/6, 2π/6).

For L = 6, the degeneracy of the L2 triangular molecules is broken when one turns on t.
A t/U expansion gives for the L2 = 36 low-energy levels

E0(K) = A2 − 2t3 (cos 2πKx + cos 2πKy) + 2r3 (cos 2π3Kx + cos 2π3Ky) + 0(
t4

U3
). (6)

A2 = 0.9023U − 208.9(t2/U), t3 = 1000(t3/U2) and r3 = 1660(t3/U2). This t/U expansion
makes sense when both dmin and dmax are well defined, with small relative fluctuations of
order t/U . This means rs ≥ 200 (see fig. 3 in the following). To describe lower rs (40 <
rs < 200), where dmin ≈ 3 is well defined, while dmax has still large fluctuations, we propose a
simple ansatz based on the concept of partially melted triangular molecules (PMTMs). An x-
oriented PMTM (x-PMTM) is a rigid two-particle Wigner molecule (2PWM) with dmin = L/2
combined with a third particle free to move with a wave vector kx parallel to the 2PWM at
a distance L/2, as sketched in fig. 2. The x-PMTM wave function of momentum K reads

|Ψx(K, kx)〉 =
1

6
√

2

∑
j

ei(Kx−k3x)jx+Kyjyc†j+ac
†
j+bc

†
kx,jy+cy

|0〉 , (7)

where a = (0, 0), b = (3, 0), c = (0, 3), and

c†k3x,jy+cy
=

1√
6

∑
jx′

eikxjx′ c†jx′ ,jy+cy
. (8)

(Kx − kx) · 6/(2π) must be odd, which leads to kx = 0,±2π/3 for K = (2π/6, 2π/6). The
y-oriented PMTM wave function |Ψy(K, ky)〉 is defined in a similar way. The final PMTM
ansatz of momentum K is a normalized combination of the x- and y-PMTMs, which reads

|Ψ(K, kx, ky)〉 =
|Ψx(K, kx)〉 − |Ψy(K, ky)〉√

2− 2 〈Ψx(K, k3x) | Ψy(K, k3y)〉
=

√
3
8

(|Ψx(K, kx)〉 − |Ψy(K, ky)〉) , (9)

and the constraint kx = ky makes it invariant under x-y permutation.
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Fig. 3 – Upper left: GS projections over PMTM ansatz with kx and ky = 0. Upper right: relative
errors ∆E/E. The bare ansatz behaviors, corrected by a first-order or a second-order t/U expansion
of 2PWM are given by dashed lines, dash-dotted lines and dotted lines, respectively. Lower left:
average inter-particle spacings 〈d〉. Lower right: fluctuations ∆d of the inter-particle spacings as a
function of rs. Exact behaviors (thick lines), and ansatz behaviors corrected by a second-order t/U
expansion of 2PWM. K = (2π/6, 2π/6).

In fig. 2, the three values Px(K, kx) = | 〈Ψ0(K) | Ψx(K, kx)〉 |2 taken by the projections of
the exact GS |Ψ0(K)〉 over the x-PMTMs |Ψx(K, kx)〉 are given as a function of rs, together
with the GS projection P (K, kx, ky) = | 〈Ψ0(K) | Ψ(K, kx, ky)〉 |2 over the PMTM of momenta
(K, kx = 0, ky = 0). Following the three projections over the x-PMTMs of different wave
vector kx, one can see how the third particle gets progressively localized in the x-direction as
rs increases, the rigid three-particle triangular molecule corresponding to Px(K, kx) = 1/3 for
the three possible kx. P (K, kx = 0, ky = 0) ≈ 93% at rs ≈ 100. However, only the PMTMs
with kx = ky = 0 contribute when rs ≤ 50. For those values of rs, the third particle is fully
delocalized in the direction parallel to the oriented PMWMs. However, it is likely that the
PMTM ansatz overestimates the rigidity of the remaining 2PWM when rs becomes smaller.
This can be partly fixed using a t/U expansion for the 2PWM (as sketched in fig. 2, left) and
keeping the third particle in its delocalized plane-wave state with kx(ky) = 0.

The improvements coming from this partial t/U expansion of the PMTM ansatz are given
in fig. 3, where one can see the behaviors of the bare ansatz, of the ansatz corrected to
first order and to second order of the t/U expansion of the 2PWM. In the upper panels,
the GS projections and the relative errors ∆E(p)/E are shown, E denoting the exact GS
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energy, ∆E(p) = EA(p) − E, EA(p) being the ansatz energy at the p-th order of the partial
t/U expansion. Not only the GS description is improved, but lower values of rs can now be
reached. In the lower panels, the three GS inter-particle spacings dmin dint and dmax are given,
and compared to the corresponding values of the ansatz, after a second-order t/U expansion
of the 2PWM. As underlined by the arrows, both the averages and the variances are now well
described for rs ≈ 40.

However, let us underline that the mesoscopic melting process is not yet achieved at
rs ≈ 40. From a study of the weak-coupling limit, we have obtained precursor behaviors of
the formation of the Wigner molecule at smaller rs. For instance, certain GS projections over
low-energy non-interacting states which are close in energy to the non-interacting GS, but
orthogonal to the large-coupling Wigner molecule, begin to decay when rs > 5. Therefore,
the PMTM ansatz, even improved by a t/U expansion of the 2PWM, fails to describe this
precursor regime (5 < rs < 30) where a floppy 2PWM takes place, but is not rigid enough to
be described by a simple t/U expansion.

In summary, we have shown that the quantum melting of a three-particle Wigner molecule
confined on a 2d torus proceeds via an intermediate regime which can be described by the
simple concept of a partially melted Wigner molecule, built of a delocalized particle and of
a floppy 2PWM. This is in agreement with the general multi-stage picture of mesoscopic
quantum melting given by other works using 2d parabolic traps. At a mesoscopic scale, this
gives a simple illustration of the quantum crystal with k = 0 defectons conjectured by Andreev
and Lifshitz. Notably, one can see that the number of Wigner lattice sites is smaller than the
total number of charges. This shows that the multi-stage melting is not a mesoscopic surface
effect and suggests that dilute 2d electron gases of intermediate rs could be more complicated
than usually assumed.
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