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Abstract. – We consider interaction effects in a granular normal metal at not very low
temperatures. Assuming that all weak localization effects are suppressed by the temperature
we replace the initial Hamiltonian by a proper functional of phases and study the possibility
for a phase transition depending on the tunneling conductance g. It is demonstrated for any
dimension that, while at small g the conductivity decays with temperature exponentially, its
temperature dependence is logarithmic at large g. The formulae obtained are compared with
an existing experiment and a good agreement is found.

In an experiment [1] on granular Al-Ge thick films several interesting effects have been
discovered. Destroying superconductivity by a magnetic field up to 17 T the authors could
study, in particular, properties of the normal state. Some features of the normal state related
to a negative magnetoresistance due to superconducting fluctuations have been discussed
recently [2] but an unusual observation remained completely unexplained.

What we have in mind is a peculiar temperature dependence of the conductivity found in
some samples. Samples that had a high room temperature resistivity showed an exponential
decay of the conductivity as a function of temperature. This behavior is typical for insulators
and has been interpreted in ref. [1] in this way. Samples with larger intergranular couplings
did not show any exponential decay but the resistivity did not saturate at low temperatures
and the authors described its temperature dependence by a power law

R = AT−α, (1)

with α = 0.117. Apparently, with such a small value of α a logarithmic temperature depen-
dence

R = A (1 − α ln T ) (2)

(obtained by expansion of eq. (1) in α) could describe the experimental data as well. It is
relevant to emphasize that the array of the grains was three-dimensional and one could not
attribute such a behavior to weak localization effects.
c© EDP Sciences
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In this paper, we consider a model for granular metals at not very low temperature and
demonstrate that by changing the dimensionless tunneling conductance g one can have either
exponential temperature dependence of the resistivity at small g < 1 or the logarithmic
behavior, eq. (2), at large g > 1. It will be shown that the result is applicable for any
dimensionality of the array of grains, which contrasts usual logarithmic corrections due to
interference effects [3] typical for 2D. The Hamiltonian describing the model is chosen as

Ĥ = Ĥ0 + Ĥt + Ĥc, (3)

where Ĥ0 is the one-electron Hamiltonian of isolated grains including disorder within the
grains. The tunneling of the electrons between the grains is given by

Ĥt =
∑

i,j,α,α′
tijψ̂

†
αiψ̂α′j , (4)

where the summation is performed over the states α, α′ of each grain (spin is conserved) and
over neighboring grains i and j. The possibility to tunnel from the state α to an arbitrary state
α′ of other grains introduces an additional disorder resulting in a finite tunnel conductance.

The term Ĥc in eq. (3) describes the charging energy,

Ĥc =
e2

2

∑
ij

N̂iC
−1
ij N̂j . (5)

In eq. (5), N̂i =
∑

α

∫
ψ̂†

α (ri) ψ̂α (ri) dri − N̄ is the excess number of electrons in the i-th
grain (N̄ is the dimensionless local potential) and Cij is the capacitance matrix. Equation (5)
describes the long-range part of the Coulomb interaction in the limit of weak disorder inside the
grains and has been used in many works. Calculations with the Hamiltonian Ĥ, eqs. (3),(5),
can be replaced by computation of a functional integral over anticommuting fields ψα (τ).

Although the model described by eqs. (3), (5) contains only the long-range part of the
Coulomb interaction, it is still very complicated, because at very low temperatures interference
becomes very important and one has to consider an interplay of localization and interaction
effects. One could do this either using diagrammatic expansions [3] or writing a non-linear
σ-model [4]. Both methods allow to consider the limit of large tunneling conductances g and
the results are strongly dependent on the dimensionality. However, the behavior, eq. (1) or
eq. (2) was not predicted for 3D in any of these works.

The model, eqs. (3), (5), becomes simpler if the temperature T is not very low so that
low-energy diffusion modes are damped. As was discussed in a recent publication [5], the
granular metal can be described at temperatures T � gδ, where δ is the mean level spacing
in a single grain, by the Ambegaokar, Eckern and Schön (AES) [6] functional of the free
energy. If g � 1, this condition should be replaced by T � δ. The limit of not very low
temperatures not only simplifies the consideration but is interesting on its own because it
leads to an unusual behavior of physical quantities and is easily accessible experimentally. In
particular, we will see that by changing the tunneling conductance g one may have a transition
from the exponential temperature dependence of the resistivity to the logarithmic behavior,
eq. (2).

We calculate the conductivity σ (ω) using the Kubo formula and making an analytical
continuation from Matsubara frequencies iωn to real frequencies ω [7]. In order to reduce
the calculation of physical quantities to a computation of correlation functions with the AES
action we decouple the interaction term, eq. (5), by integration over an additional Vi (τ) and
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then, following refs. [5, 8], remove this field from Ĥ0 by the gauge transformation

ψi (τ) → e−iϕ(τ)ψi (τ) , ϕ̇i (τ) = Vi (τ) . (6)

This is not a trivial procedure, because the new fields ψα (τ) should obey, as before, the
boundary condition ψα (τ) = −ψα (τ + β) , β = 1/T . So, the field Vi (τ) cannot be completely
removed from Ĥ0 at arbitrarily low temperatures. Instead of ϕi(τ) let us consider φ̃i(τ):

φ̃i (τ) = φi (τ) + 2πTkiτ, (7)

where −∞ < φi (τ) < ∞, φi (0) = φi (β), and ki = 0,±1, ±2, ... are the so-called winding
numbers. Performing the gauge transformation with φ̃i instead of ϕi(τ), the antiperiodicity
of the ψα is preserved, but the action still contains a term linear in i(Vi − ˙̃

φi) ∈ (−iπT, iπT ).
Only in the limit T � δ this term can be neglected. The integration over φ̃i (τ) implies
integration over φi (τ) and summation over ki. At large g � 1, one can put all ki = 0.
However, at g � 1 one should sum over all ki and neglecting the contribution of the non-zero
winding numbers, as done in ref. [8], leads to incorrect results.

Using the phase representation one can write the conductivity σ (ω) in the form

σ (ω) =
iad−2

ω

[∫ β

0

dτeiΩnτK (τ)

]
Ωn→−iω+δ

,

K (τ) = 〈Xa
2 (τ)〉 −

∑
i

〈Xa
10 (τ) Xa

1i (0)〉, (8)

Xa
2 (τ) = e2πg

∫ β

0

dτ ′ (δ (τ) − δ (τ ′ − τ)) α (τ ′) cos
(
φ̃i,i+a (τ ′) − φ̃i,i+a (0)

)
,

Xa
1i (τ)=eπgα (τ−τ ′) sin

(
φ̃i,i+a (τ ′)−φ̃i,i+a (τ)

)
, α (τ)=T 2

(
Re (sin (πTτ +iδ))−1

)2

,

where a is a vector connecting the centers of neighboring grains i and i + a, a = |a| , and d
is the dimensionality of the array. In eqs. (8), φ̃ij (τ) = φ̃i (τ) − φ̃j (τ) for i and j standing
for neighboring grains and

〈...〉 =
∫

(...) exp [−S]Dφ̃

(∫
exp [−S]Dφ̃

)−1

, (9)

where Dφ̃ stands for both the functional integration over φ (τ) and summation over the wind-
ing numbers ki. The AES action S can be written as

S = Sc + St, (10)

where Sc describes the charging energy,

Sc =
1

2e2

∑
ij

∫ β

0

dτCij
dφ̃i (τ)

dτ

dφ̃j (τ)
dτ

, (11)

and St stands for tunneling between the grains,

St = 2πg
∑

|i−j|=a

∫ β

0

dτdτ ′α (τ − τ ′) sin2

(
φ̃ij (τ) − φ̃ij (τ ′)

2

)
. (12)
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The dimensionless conductance g is given by g = 2πν2t2ij , where tij is the tunneling amplitude
from grain i to grain j (spin is included).

Although the model described by eqs. (8)-(12) is simpler than the initial model, eqs. (3)-
(5), explicit formulae can be written only in limiting cases. The same action S, eqs. (10)-(12),
was used in ref. [9], and a metal-insulator transition has been predicted in a 2D array of tunnel
junctions. However, the authors of ref. [9] did not calculate the conductivity but discussed
properties of the partition function. For large g they did not account for phase fluctuations
properly which, as we show here, are responsible for the behavior, eq. (2). Moreover, we find
a transition in any dimensionality.

If the temperature T is very high, T � Ec ∼ e2C−1
ij , where Ec is the electrostatic energy

of adding one electron to a grain, fluctuations of the phases φ̃ are negligible and one can set
φ̃ = 0 in the expressions for X1 and X2 in eqs. (8). Then, we obtain easily the conductivity

σ0 = e2gad−2, (13)

which shows that at such temperatures charging interactions are not important.
In the opposite limit T � Ec, transport in the granulated system has much more interesting

characteristics. This inequality can be compatible with the inequality T � max{gδ, δ}, used
for the derivation of eqs. (8)-(12), because Ec � δ for 2D and 3D grains.

We calculate the conductivity at temperatures T � Ec in the limits g � 1 and g � 1.
In the limit of large conductances g � 1, fluctuations of φ are small and all non-zero

winding numbers ki can be neglected. Non-zero ki (as well as variations of N̄i) would lead to
contributions of order exp [−g], and can be neglected in any expansion in 1/g.

Keeping only terms quadratic in φ in eqs. (10)-(12) we reduce the action S to the form

S = T
∑
q,n

φq,nG−1
q,nφ−q,−n, (14)

G−1
q,n = ω2

n/ (4E (q)) + 2g |ωn|
∑

a

(1 − cos qā) ,

where E (q) = e2/ (2C (q)) and C (q) is the Fourier-transform of the capacitance matrix Cij

(q are quasi-momenta for the array of the grains). One should sum in eq. (14) over d unit
lattice vectors ā, where d is the dimensionality of the array.

Keeping only terms quadratic in φ in the action but not expanding the function X2,
eqs. (8), one reduces the correlator 〈X2a (Ωn)〉 to the form

〈X2a (Ωn)〉 = πe2g

∫ β

0

α (τ)
(
1 − eiΩnτ

)
e−G̃a(τ)dτ,

G̃a (τ) = 4T
∫

dq

(2π)d
Gqn sin2 qā

2
sin2 ωnτ

2
. (15)

One can check that the contribution coming from the correlator of the functions X1 in
eqs. (8) contains additional powers of 1/g and can be neglected in the main approximation. It
is very important that the correlator 〈X1X1〉 in eqs. (8) contains a summation over j, which
corresponds to the zero quasi-momentum of the function K. If we carried out the computation
for a single grain the contribution from 〈X1X1〉 would not be smaller than the one from 〈X2〉.

What remains to be done in order to calculate the conductivity for g � 1 is to compute
the integral in eq. (15) for the Matsubara frequencies Ωn and make the analytical continuation
Ωn → −iω + δ. In the lowest order in α the result for the conductivity σ in the limit ω → 0 is

σ = σ0 (1 − α ln (gEc/T )) , α = (2πgd)−1
. (16)
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Thus, at large g � 1 the conductivity decays with temperature logarithmically. Of course,
one may not use this formula at very low temperature because the present consideration is
valid at not very low temperatures T � gδ when the AES action may be used. At lower
temperatures, one should take into account interference effects and, depending on the dimen-
sionality d of the array, both metal and insulating states are possible. In contrast, eq. (16) is
valid in any dimensionality.

If we used eq. (15) exactly we would obtain the power law, eq. (1), with the exponent α
from eq. (16). A similar dependence was written for the voltage dependence of the conductance
of a single junction in a model with an electromagnetic environment [10,11]. However, taking
into account non-quadratic terms in the expansion of the action in phases φ changes this result
and one comes again to eq. (16). For a single junction this result is known since the works
of ref. [12] where a proper renormalization group (RG) equation was written. One can check
that, in the first order of the RG, the equation is the same for a granular metal and does not
depend on the arrangement of the grains in the array. It can be written as

dg (ξ)
dξ

= − 1
2πd

, (17)

where ξ = − ln τ and g (ξ) is the effective conductance.
Solving eq. (17) with the boundary condition g (0) = g we come immediately to eq. (16).
However, next orders in the RG (expansion of the Gell-Mann-Low function in g (ξ)) are

dependent on the type of the array and differ from the corresponding terms for a single junc-
tion. The applicability of the one-loop approximation, eq. (17), and of its solution, eq. (16),
implies an additional inequality for the temperature: T ≥ Tc = gEc exp[−1/α]. In other
words, eq. (16) remains valid until σ/e2 becomes of the order unity. For not very large grains
this inequality is less restrictive because Tc is exponentially small for large g. The dimen-
sionality of the array d enters eqs. (16), (17) as a parameter only. Actually, the number of
contacts with neighboring grains (coordination number) rather than the dimensionality itself
enters eqs. (16), (17). This difference may be important in situations when the grains are
close packed in a cubic lattice.

The logarithmic behavior, eq. (16), describes the granular system at sufficiently large g � 1.
At smaller g, the temperature dependence becomes exponential and we check this statement in
the limit g � 1 expanding the functional integral in eq. (9) in the tunneling part St, eq. (12),
of the action. The main contribution comes again from the function 〈X2 (τ)〉 in eqs. (8). In
the lowest order one can completely neglect St, which leads to computation of the correlator
Π (τ):

Π (τ) =
〈
exp

[
−i

(
φ̃i (τ) − φ̃i (0)

)]〉
Sc

, (18)

where the phases φ̃i (τ) are introduced in eq. (7), Sc is given by eq. (11) and the averaging
should be performed with this functional. (Strictly speaking, the function Π (τ) is sufficient for
calculating K (τ) only for diagonal Cij . However, a proper modification for an arbitrary Cij

is simple.) The computation of the average in eq. (18) can be performed using two different
methods. A more straightforward way of calculating is to use the definition of φ̃i (τ), eq. (7),
which allows to represent the action Sc as Sc = Sc[φ]+Sc[k] and to carry out integration over
the phase φ and summation over the winding numbers separately. Integrating over the phase
φi (τ) we obtain for 0 < τ < β (see also [8, 9])

〈e−i(φi(τ)−φi(0))〉 = exp
[−Bii

(
τ − Tτ2

)]
, (19)

where Bij = e2

2

(
C−1

)
ij

.
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However, eq. (19) is not the final result and the summation of the winding numbers is
essential. This can be performed using the Poisson summation formula. As a result, the
function Π (τ) can be represented as

Π (τ) =
1
Z

e−Biiτ
∑
{nk}

e−
∑

k 2τnkBki−β
∑

k,l Bklnknl , (20)

where all nk are integers and Z is a normalization coefficient (Π (0) = 1). The necessary
periodicity in τ of the function Π (τ) with the period β is evident from eq. (20).

The second method is to use the standard quantum-mechanical formalism instead of cal-
culating the functional integrals in eq. (18), which has been suggested in an earlier work on
granulated superconductors [13]. Within this approach one writes instead of the action Sc,
eq. (11), an effective Hamiltonian Ĥeff ,

Ĥeff =
∑
ij

Bij ρ̂iρ̂j , ρ̂i = −i∂/∂φi, (21)

and calculates the thermodynamic average with Ĥeff . For the function Π (τ) one should
calculate the average

〈e−i(φ̂i(τ)−φ̂i(0))〉Ĥeff
, φ̂i (τ) = eĤeffτφie

−Ĥeffτ .

Eigenvalues of the operators ρ̂i are integers (eigenfunctions of Heff must be periodic in φ with
period 2π) and one comes easily to eq. (20). This consideration explicitly demonstrates that
accounting for the winding numbers leads to the charge quantization.

We see from eq. (20) that, in order to get an explicit expression for the conductivity, one
should sum over all configurations of charge. At high temperatures T � Ec the sum over nk

in eq. (20) can be replaced by integrals and we get Π (τ) = 1, which leads to eq. (13).
In the opposite limit, T � Ec, the main contribution comes from charge configurations

with the lowest energy. The ground state with all nk = 0 does not contribute to the conduc-
tivity. If the lowest excited state corresponds to one charged grain with charge ±1 (depending
on a particular Cij), we come, using eqs. (8) in the limit ω → 0, to the rather simple formula

σ = 2σ0 exp [−Bii/T ] . (22)

Since Bii is the energy corresponding to the charge ±1, eq. (22) corresponds to conduction
of an activated electron and hole (the factor 2 means that both of them are taken into account).

Comparing eq. (22) with eq. (16) we come to the conclusion that there must be a critical
value gc separating in the limit T → 0 the logarithmic behavior from the exponential one.
Whether the activation energy (Coulomb gap) turns to zero or has a jump at g = gc is not
clear from the present consideration. (Strictly speaking, there should not be any singularity
of the conductivity at finite temperatures but the change of the behavior may be noticeable
experimentally or numerically.) The model of the granular metal may be used to describe dis-
ordered electron systems at low electron density. In this case, potential wells would correspond
to the grains.

The sample of the experiment [1] that showed the “power law behavior”, eq. (1), had
the room temperature resistivity R0 = 7.3 × 10−3 Ω cm. The diameter of the grains was
120 ± 20 Å, which allows, using the value �/e2 = 4.1 × 103 Ω, to estimate the dimensionless
tunnel conductivity as g = 0.7. If we put d = 2 in eq. (16) we obtain α = 0.116, which
exactly corresponds to the experimental value from eq. (1). However, the arrays used in
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ref. [1] were rather thick and, at first glance, one should use d = 3. Nevertheless, the value
of d in eq. (16) corresponds rather to the half of the contacts of a single grain than to the
real dimensionality. Then, the experimental value of α indicates that either the grains are not
closely packed so that the typical number of contacts per grain is 4 or our calculation is too
rough to provide a quantitative agreement with the experiment (the value of α, eq. (16), is
based on the assumption g � 1 but the experimental value of g is of order 1). The resistivity
of samples with a high room temperature resistivity behaved as exp

[
a/T 1/2

]
rather than

obeying the activation law, eq. (22). But this can be attributed to a variation of the size of
the grains or of the local potential [14].

In conclusion, we suggested a scheme of calculating the conductivity of a granular metal
at not very low temperatures. On the basis of explicit results we demonstrated the exis-
tence in any dimensionality of a transition between states with exponential dependence of the
conductivity on temperature and a logarithmic one. Relating the coefficient α to the room
temperature conductivity we were able to compare our results with an existing experiment and
got a good agreement. The model of the granular metal may also serve as a good description
of disordered systems with a low electron density.
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