

ERRATUM

Pion contribution to K⁺-nucleus scattering from chiral Lagrangian

To cite this article: Y. H. Tan et al 2002 EPL 59 318

View the article online for updates and enhancements.

You may also like

- <u>Neutral pion condensation and magnetic</u> <u>field in the chiral model</u> Koichi Takahashi
- <u>Mesonic condensation in isospin matter</u> <u>under rotation</u> Hui Zhang, , Defu Hou et al.
- <u>Charged pion condensation in anti-parallel</u> electromagnetic fields and nonzero isospin density

Jingyi Chao, , Mei Huang et al.

EUROPHYSICS LETTERS Europhys. Lett., **59** (2), p. 318 (2002) Erratum

Pion contribution to K⁺-nucleus scattering from chiral Lagrangian

Y. H. TAN^{1,2}(*), L. LI^2 and P. Z. $NING^{1,2,3}(**)$

¹ CCAST(World Laboratory) - P.O. Box 8730, Beijing 100080, PRC

² Department of Physics, Nankai University - Tianjin 300071, PRC

³ Institute of Theoretical Physics - Beijing 100080, PRC

(Europhys. Lett., 58 (2), pp. 202–208 (2002))

PACS. $24.10\,.\,Jv$ – Relativistic models. PACS. $25.45\,.\,De$ – Elastic and inelastic scattering.

In our paper, eq. (9), quoted from [1] and describing the unitary relation, wrote:

$$\operatorname{Im} t_l^I = \frac{2q}{\sqrt{s}} |t_l^I|. \tag{9}$$

Unfortunately, square was missing from the absolute value of t. In fact, the correct equation should read

$$\operatorname{Im} t_l^I = \frac{2q}{\sqrt{s}} \left| t_l^I \right|^2.$$

As a consequence, some development and eq. (11) are wrong. The results of our paper relating with eq. (11) are wrong.

REFERENCES

[1] ROESSL A., Nucl. Phys. B, 555 (1999) 507.

^(*) E-mail: tanchunhu@eyou.com

^(**) E-mail: ningpz@nankai.edu.cn