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Abstract. – We found that models of evolving random networks exhibit dynamic scaling
similar to scaling of growing surfaces. It is demonstrated by numerical simulations of two
variants of the model in which nodes are added as well as removed (Phys. Rev. Lett., 83 (1999)
5587). The averaged size and connectivity of the network increase as power laws in early times
but later saturate. Saturated values and times of saturation change with paramaters controlling
the local evolution of the network topology. Both saturated values and times of saturation obey
also power law dependences on controlling parameters. Scaling exponents are calculated and
universal features are discussed.

Introduction. – In the last two years, there has been an increasing activity in the study
of the structure and the time evolution of complex random networks [1–3]. Real data have
been analyzed and at the same time many simplified models have been formulated and in-
vestigated. The applications in different contexts are ranging from evolution of WWW and
Internet, over evolution of metabolic networks to the structure of social networks, or linguistic
networks. Detailed mechanisms of evolution differ from one problem to another, nevertheless,
some common features have already been identified. For example, it was revealed that many
networks are scale free, i.e., the distribution of the connectivity of nodes (vertices) is a power
law. It was shown that the scale-free structure can be reproduced in the case of growing
systems by models with a preferential attachment for adding new nodes [4].

The challenging open problem is to clarify what are the universal features of network
dynamics, if any. The concept of scale-free networks does not provide a classification into
universality classes. A wide range of exponents was found by analysis of the real data, and
the exponents in models with preferential attachment can take an arbitrary value larger than
two [5,6]. Moreover, this concept deals with the internal structure of the networks rather than
with possible types of dynamics.
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It is of interest to explore the time dependence of global characteristics of networks. Two
such global quantities are the size of the network N(t) and the mean connectivity k(t). The
size of the network is the total number of nodes and the mean connectivity is defined as
the average of the degrees of nodes (the local connectivities) over all nodes in the network.
Different types of network evolution can be encountered. In some cases, one observes a rapid
increase of the network size, the typical example being the Internet. Other systems, e.g.
linguistic networks, seem to be in a stationary state with an approximately constant size.
Similarly, the mean connectivity can also increase or saturate. The situation clearly depends
on the time scale considered. A network which is rapidly growing in a certain time interval may
after some transient reach a stationary state. A system which looks to be stationary or only
slowly varying in a limited time interval may exhibit strong fluctuations on a long time scale.

The network size and the mean connectivity are expected to fluctuate in real systems. The
fluctuation and/or shortage of reliable real data in a sufficiently long time interval can result
in difficulty or even impossibility of tracing the general trends. However, the fluctuations can
be reduced by averaging over many independent realizations when the evolution is explored by
the simulations of simplified models. Then the information about the time behaviour can be
extracted, and bias or saturation can be revealed. One can ask what are the time dependences
of the global quantities, whether there are generic scenarios of the network evolution, etc.

In this letter, we study the time evolution of global characteristics in the model which has
been recently introduced by us in the context of study of the biological evolution [7, 8]. We
found that the averaged network size and the averaged mean connectivity initially increase
as power laws and later saturate. We show that these quantities exhibit dynamical scaling
analogous to the scaling revealed previously in the study of surface growth [9]. The existence of
scaling invariance suggests a possible universal behaviour. Therefore, we check the sensitivity
to modifications of the model.

Model. – To fix ideas, we briefly describe our model. The model is based on extremal
dynamics [10] with particular rules for adding and removing a node. The system is composed
of N nodes, connected by links. The state of each node is described by a single dynamical
variable b ∈ (0, 1), called barrier. In each step, the following dynamical rules [7] are applied:

i) The node with minimum b is found and mutated. The barrier of the mutated node is
replaced by a new random value b′.

ii) The barriers of all nodes linked to the selected unit are also replaced by new random
numbers. If b′ is larger than the barriers of all its linked neighbours, the node gives birth to a
new node (speciation). If b′ is lower than the barriers of all linked neighbours, the node dies
out (extinction). In the remaining cases, the number of nodes remains unchanged.

The motivation of these rules is the following. Well-adapted nodes proliferate more rapidly
and the chance for speciation is higher. However, if the local diversity, measured by connec-
tivity of the node, is bigger, there are fewer available possibilities for the change and the prob-
ability of speciation is lower. On the other hand, poorly adapted nodes are more vulnerable to
extinction, but at the same time larger diversity (larger connectivity) may favour the survival.

iii) Speciation means that a new node is added into the system, with a random barrier.
iv) Links are established between the new node and the neighbours of the mutated node:

each link of the “mother” node is inherited with probability p by the “daughter” node. The
rule iv) reflects the fact that the new node is to a certain extent a copy of the original, so the
relations to the environment will be initially similar to the ones the old node has. Moreover,
if a node which speciates has only one neighbour, a link between “mother” and “daughter”
is also established. Similar models with duplication of the local geometry were recently used
for modeling of protein interaction network [11–13].
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Fig. 1 Fig. 2

Fig. 1 – Time evolution of the averaged number of nodes 〈N〉 (upper curves) and the averaged mean
connectivity 〈k〉 (lower curves) for different values of the parameter p. Values of p from bottom to top
are p = 0.85, 0.9, 0.95, 0.97, 1 for the number of nodes and p = 0.85, 0.9, 0.95, 0.97 for connectivity.
Data are averaged over 1000 independent runs. The straight lines are guides for the eye, with slopes
0.35 (dashed line) and 0.24 (dot-dashed line).

Fig. 2 – Data collapse of time evolution of the number of nodes 〈N〉 for different values of the
parameter p from fig. 1. Inset: saturated values of the number of nodes N sat (crosses) and times of
saturation tsatN (pluses) vs. (1− p). The straight lines are guides for the eye, with slopes 0.8 (full line)
and 2.3 (dashed line).

v) When the node is extinct, it means that the node is removed without any substitution
and all links it has are broken. As a boundary condition, we use the following exception: if
the network consists of a single isolated node only, it never dies out. We suppose that a node
completely isolated from the rest of the system has lower chance to survive. This leads to the
following rule.

vi) If a node dies out, all its neighbours which are not connected to any other node die
out with probability psing. We call this kind of extinctions singular extinctions.

We previously showed that the model is self-organized critical [7, 8]. Here, we focus on
scaling with time. In all simulations below, the evolution starts with a single node.

Dynamic scaling of evolving network. – In this part, we restrict ourselves to the situation
psing = 1 (all isolated nodes will die out), but we consider different values of the parameter
p. The size N as well as the connectivity k averaged over all nodes strongly fluctuate during
the evolution (cf. fig. 2 in [7]), and no clear tendency can be deduced. However, two different
regimes are identified after averaging over many independent runs (fig. 1). The crossover time
tsat between two regimes depends on the parameter p. In the initial stage t � tsat, both
averaged quantities increase as power laws:

〈N〉 ∝ tβN , 〈k〉 ∝ tβk , (1)

with the exponents βN � 0.35 and βk � 0.24. Here 〈...〉 is a statistical average, and the
bar denotes an average over nodes. In the second regime, the averaged number of nodes 〈N〉
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Fig. 3 Fig. 4

Fig. 3 – Data collapse of time evolution of the averaged mean connectivity 〈k〉 for different values of
parameter p from fig. 1. Inset: saturated values of the averaged mean connectivity k

sat
(crosses) and

time for saturation tsatk (pluses) vs. (1− p). The straight lines are guides for the eye, with slopes 0.6
(full line) and 2.5 (dashed line).

Fig. 4 – Time evolution of the averaged number of nodes 〈N〉 in the lattice variant of the model
with 8 neighbours and for different values of the parameter psing. Values of psing from top to bottom
are psing = 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1. Data are averaged over 1000 to 10000 independent runs.
The straight dashed line is a guide for the eye, with slope 0.41. Inset: time evolution of the averaged
number of nodes 〈N〉 in the lattice variant of the model with 4 neighbours. Values of psing from top to
bottom are psing = 0.05, 0.1, 0.2, 0.4. The straight dashed line is a guide for the eye, with slope 0.41.

and therefore also the averaged mean connectivity 〈k〉 saturate after times tsatN and tsatk . The
crossover times tsatN and tsatk are different (tsatk being smaller than tsatN ).

The saturated values N sat, k
sat

and the times of saturation tsatN and tsatk increase with p.
The parameter p controls correlations between the structure of the neighbourhood of the
“mother” node and the “daughter” node. We define ξ = 1/(1 − p) as an analog of the
correlation length. We have found that the saturated values N sat, k

sat
depend on ξ as powers

(insets in figs. 2 and 3),

N sat ∝ ξαN , k
sat ∝ ξαk (2)

with the exponents αN = 0.8, αk = 0.6. The exponents αN and αk approximately agree
with the exponents obtained in [8] by the calculation of the mean values using the stationary
distribution P(k). Both crossover times also fulfil the power law,

tsatN ∝ ξzN , tsatk ∝ ξzk . (3)

The exponents are zN = 2.3 and zk = 2.5 (insets in figs. 2 and 3). The behaviour for p = 1
is different. There is no saturation for p = 1 on the scale of our simulations and the model is
critical [7, 8].

This scaling behaviour is similar to the well-known dynamic scaling for kinetic roughening
during surface growth [9]. Data for 〈N〉(t, ξ) as well as for 〈k〉(t, ξ) can be rescaled to a single
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curve (figs. 2 and 3). Hence, both 〈N〉 and 〈k〉 fulfil the following scaling relations:

〈N〉 ∝ ξαN fN (t/ξzN ), 〈k〉 ∝ ξαkfk(t/ξzk), (4)

where fN (x) and fk(x) are two different scaling functions with properties fN (x) = const1,
x 	 1, fN (x) ∝ xβN , x � 1 and fk(x) = const2, x 	 1, fk(x) ∝ xβk , x � 1. Exponents βN ,
αN , zN (βk, αk, zk) are not independent, but obey the relation βN=αN/zN (βk=αk/zk) (for
reviews on kinetic roughening see [14,15]). The relations between exponents are well satisfied
for the above-obtained values.

Lattice variant of the model. – If psing < 1, then more and more isolated nodes will be
generated. The above rules do not allow to connect an isolated node to any other node. It
will remain isolated forever. This may be an unrealistic situation. One rather expects that
isolated nodes can be, with a certain probability, reconnected. In this case an additional rule
for reconnection would be needed, e.g., based on the list of links of extinct nodes. This would
imply the need of complicated bookkeeping. In order to assess the effect of singular extinctions,
we use a different variant of the model which allows to avoid the above unrealistic situation.

We suppose that nodes are now living on a regular lattice. It means that only some sites
of the given lattice are occupied by nodes at the given time. The occupation may change
during evolution. The lattice sites can represent the different positions in the Euclidean space
or in some abstract space. The extremal dynamics is again employed, nodes are added or
removed using the rule ii). However, a node can speciate only if there is an unoccupied site
in the neighbourhood of the selected extremal node. A new “daughter” node is placed on a
randomly selected unoccupied site within the neighbourhood.

The structure of links of the “daughter” node is now not inherited, but it is automatically
given by existing nodes in her neighbourhood. The links are established from a given node to
all neighbouring nodes (occupied sites within a given neighbourhood). Hence, the above rule
iv) does not apply and is replaced by automatic connection within the given neighbourhood.
The network is formed by clusters of connected nodes on the lattice. All links of an extinct
node are broken. We apply the rule vi) for singular extinction with psing ∈ 〈0, 1〉. Therefore,
isolated nodes can be created and can be reconnected. The rules also allow reconnection of
previously disconnected clusters. The lattice variant of the model has similar self-organization
properties as the above described off-lattice variant. In particular, it exhibits power law in
the distribution of forward avalanches [16].

We consider for simplicity in the following the simple square lattice of size L × L with
periodic boundary conditions. The size L has been chosen so large that finite-size effects have
no influence (L = 40–160 depending on psing). We performed simulations for two definitions
of the neighbourhood. The neighbourhood was composed of 4 nearest neighbours (4n-model)
and 4 nearest neighbours plus 4 next-nearest neighbours (8n-model).

We found that the time behaviour of the network size and the averaged mean connectivity
is qualitatively the same as in the off-lattice model. Both quantities are fluctuating; however,
after averaging (over 1000 or more independent runs), two regimes can be clearly seen: the
initial power law increase and the saturation at the late times. The time evolution of the
network size for two modifications with 4 and 8 neighbours is displayed in fig. 4. An initial
power law increase 〈N〉 ∝ tβN with exponent βN = 0.41 is observed in both cases. Nsat

increases with decreasing psing. Saturated values are substantially lower for the 4n-model
than for the 8n-model.

The dependence of saturated values and times of saturation on psing is shown in fig. 5.
There are again power laws with more or less the same exponents for both considered neigh-
bourhoods. Similarly as above, we define an analog of the correlation length ξ̃ = 1/psing. Then
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Fig. 5 Fig. 6

Fig. 5 – Saturated values of the number of nodes N sat for the model with 4 neighbours (crosses) and
with 8 neighbours (pluses) and time of saturation tsatN for the model with 4 neighbours (squares) and
with 8 neighbours (asterisks) vs. psing. The straight lines are guides for the eye, with slopes 1.1 (full
line) and 2.7 (dashed line).

Fig. 6 – Data collapse of time evolution of the number of nodes 〈N〉 in the lattice variant of the model
with 8 neighbours for different values of the parameter psing from fig. 4. Inset: data collapse of time
evolution of the number of nodes 〈N〉 in the lattice variant of the model with 4 neighbours.

we have
N sat ∝ ξ̃αN , tsatN ∝ ξ̃zN , (5)

with the exponents αN = 1.1 and zN = 2.7. The relation βN = αN/zN is well satisfied. We
show the corresponding data collapse supporting the scaling relation 〈N〉 ∝ ξ̃αN fN (t/ξzN ) in
fig. 6. When psing = 0, the network grows until the evolution will be affected by the given
finite lattice size.

Due to a low maximal possible value, the connectivity saturates very soon and good scaling
of connectivity with psing has not been obtained. Therefore, data for the time evolution of
connectivity are not presented. In order to study carefully scaling of connectivity in the lattice
model, one should consider a larger size of neighbourhood —including also more distant sites
or considering the model on the hypercube.

An external condition limiting the size of the network or the connectivity will lead trivially
to the saturation of these quantities. One expects that there will be scaling with the limiting
value. We verified that indeed there is dynamic scaling of the form

〈N〉 ∝ LαN g(t/LzN ) (6)

with time and the external parameter L. Here, g(x) is again a scaling function with the
properties g(x) = const3 for x 	 1 g(x)∝xβN for x � 1. In the case of the 4n-model,
we measured the exponents αN = 2.07, βN = 0.44, zN = 4.8 fulfilling well the relation
βN = αN/zN .

Conclusion. – We have studied the time dependence of the global characteristics of
evolving random networks. We used the network model with the extremal dynamics and with
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the variable rules for the evolution of the local geometry. We have found that the averaged
network size and the averaged mean connectivity exhibit dynamic scaling with time and with
the parameter controlling the form of dynamical rules which in turn affects spreading of the
correlations during evolution. We considered two different variants of the model: the off-
lattice variant with varying reproduction of the local topology, and the lattice variant with
variable amount of removal of isolated nodes. We have found that dynamic scaling is fulfilled
in both variants of the model. However, the measured exponents are different. We attribute
this variance to the difference in the mechanisms of evolution. On the other hand, we verified
that there are universal features. The exponents in the lattice variant are robust to the change
of size of the neighbourhood.

We expect that dynamic scaling can be observed also in other models of evolving networks
with tunable internal dynamics. In general, dynamic scaling of evolving networks can be
characterized by four independent exponents, two for the time dependence of the averaged
size, and two for the evolution of the averaged mean connectivity. The exponents for the
evolution of the network size may be trivial or not defined in models in which the number
of nodes is only and permanently increasing. Nevertheless, the connectivity may saturate
and exhibit nontrivial scaling. Varying the external parameters like the maximal size leads
to a qualitatively different scaling. We believe that the study of dynamic scaling of evolving
networks might provide a clue to the identification of universal features of network evolution.
It is an open question if dynamic scaling allows the classification of types of network evolution
into different universal classes as in the case of the surface growth, or if the evolution of global
characteristics turns to be unique for each individual network as has been found for exponents
describing the distribution of connectivities in scale-free networks.
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