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PACS. 02.30.Hq – Ordinary differential equations.

Abstract. – The static solution of the Fokker-Planck equation, known as the Haissinski
equation and governing the longitudinal evolution of an electron beam moving in a Storage-
Ring which is subject to an inductive wake field, can be expressed in an analytical form,
using the Lambert W -function. We show how the use of this analytical tool allows a better
understanding of the validity of the numerical solutions and the distribution normalization
properties.

Introduction. – The longitudinal phase-space distribution of electrons in a storage ring
is given by the Fokker-Planck equation. Looking at the stationary solution of the Fokker-
Planck equation an expression is found for the longitudinal distribution which is the Haissinski
equation [1]. The form of this equation depends on the form of the wake field, which is given
by the Fourier transform of the storage ring impedance. The case of the purely inductive
impedance has been observed in storage rings like the SLC damping rings [2] and at KEK [3].
Approximated solutions of the Haissinski equation have been extensively investigated nu-

merically [2–5]. We note that an analytical solution of this equation exists. This solution
is given by a particular expression of the so-called Lambert W -function [6], which appears
frequently in applied mathematics and has important application in many other fields [7, 8].
In this paper we present the Lambert W -function and analyze the nature of the analytical
solution of the Haissinski equation in the case of a purely inductive impedance.
The Haissinski equation in the pure inductive case can be written in the form

ρ′ = − ξ

1− Sρ
ρ, (1)

where ρ represents the beam distribution and the derivative is taken with respect to ξ, linked
to the position z of the electron with respect to the synchronous particle by

ξ =
ωs

αccσε
z, (2)
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with ωs being the synchrotron frequency, αc the momentum compaction factor, c the speed
of light, and σε the natural energy spread of the beam.
The parameter S is specified in terms of the inductance of the wake field L, the revolution

period T0, the nominal energy of the particles E0, the number of particles N , and also the
synchrotron frequency, the natural energy spread, σε, and the elementary charge e, as

|S| = e2LNωs

α2
cσ

2
ε T0E0

. (3)

Equation (1) can be rewritten in the following more convenient form:

ln(ρ)− Sρ = −ξ2

2
+ ln(A), (4)

where A is the normalization constant defined by

lnA = ln (ρ (0))− Sρ (0) . (5)

Equations of the type above, i.e. eq. (1), have a natural analytical solution in terms of
the function known as the Lambert W -function [6]. This function appears in many branches
of pure and applied mathematics, may be a useful tool for the solution of many dynamical
problems [8], and is not as widely known as it should be.
The LambertW -function, W (z), is implicitly defined as the root of the following equation:

W (z) exp[W (z)] = z, (6)

and explicitly by the series expansion

W (z) =
∞∑

n=0

(−n)n−1

n!
zn, (7)

converging for |z| < 1
e . In the forthcoming sections other expansions of W , holding in a wider

range, will be exploited.

The Haissinski equation for an inductive wake and singularities. – It is well known and
evident that if S is negative, eq. (1) has no singularity and there is always a unique continuous
solution [5].
In the case of positive S the solution exists, but the presence of a singularity point limits the

validity of the solution to a restricted range of S values, which will be specified in the following.
According to eqs. (6)-(7) the solution of eq. (1) can be written as an infinite sum of

Gaussians, namely

ρ = −W (−AS exp[− ξ2

2 ])
S

=
1
S

∞∑
n=1

nn−1

n!
(AS)n exp

[
−n

ξ2

2

]
. (8)

The argument of the Lambert W -function has to be real and greater than − 1
e to define a

singled-valued function as a real physical distribution, which is not assured by the multivalued
Lambert function W defined for any complex argument.
The convergence of the above series depends on the real value of AS. According to the

indications of the previous section we find that the validity of the solution does not extend to
all the values of the constants A and S, but holds for

AS ≤ 1
e
. (9)
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The upper limit, associated with a branch point of the Lambert W -function, clarifies the
role of the singularity.
We can now exploit eq. (8) to specify the normalization of the distribution ρ, and the role

of A and S.
It is evident that from eq. (8) the normalized distribution is given by the value A solving

for a given S

S =
∫ ∞

−∞
W

(
− SA exp

[
− ξ2

2

])
dξ =

√
2π

∞∑
n=1

n
2n−3

2

n!
(AS)n. (10)

The r.h.s of eq. (10) is a series converging with the same range imposed by (9).
By taking for AS the upper limit of convergence and by using the Stirling approximation

n! �
√
2πnnne−n, (11)

we find the maximum value of S :

S∗ �
∞∑

n=1

1
n2
=

π2

6
. (12)

This is a rough approximation and the exact computation (given by the computing algebra
software Maple) yields

S∗ � 1.550608... , (13)

which is very close to the value given in [5], and more accurate than the previous value given
in the literature [9].
It is important to emphasise that the distribution (8) exhibits a r.m.s value below σξ < 1.

In physical terms, this means that an electron bunch experiencing a purely inductive wake
with S > 0, due to, e.g., a negative-momentum compaction factor, may have a length lower
than the natural value, provided by σz =

cαc

ωs
σε.

The behavior of σξ as a function of AS is given in fig. 1 and the limiting value, calculated
with the Stirling approximation, but very close to the exact value, is

σ∗
ξ =

√√√√ 6
π2

∞∑
n=1

n−3 � 0.854846... . (14)

The results obtained so far, apart from providing an analytical solution for eq. (1), have
clarified the nature of the singularity associated with the limits of validity of the Taylor
expansion of the Lambert W -function and the range of S values (S < S∗) for which eq. (1)
admits a normalizable solution.
Before concluding this section, let us note that the series expansion of the solution (8) can

be extended to negative values of S too, provided that SA < 1
e . An idea of the behavior of

the solution, for AS → 1
e and for AS → −1

e , is given in fig. 2. As is evident for positive (AS )
values the distinction is clearly similar to the Gaussian with a r.m.s. slightly larger than the
natural value. On the contrary for negative (AS ) values the shape is significantly different
from a Gaussian.
The possibility of obtaining a valid solution for a positive AS in a larger interval will be

discussed in the following concluding section.
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Fig. 1 – The bunch length, σξ, as a function of AS∗.

Fig. 2 – The bunch distribution in the case AS � 1
e
(squares) and in the case AS � − 1

e
(line).

Concluding remarks. – In the previous section we have explored the solution of the
Haissinski equation for a purely inductive wake using the Taylor expansion of the Lambert
W -function which has a limited convergence radius. In this section we will see how a different
expansion, admitting a larger radius of convergence, can be exploited to get a non trivial and
useful form of solution valid for negative S -values. To this aim we note that, for the present
problem, a natural alternative to the Taylor expansion is provided by [8]

W (exp[z]) = 1 +
1
2
(z − 1) + 1

16
(z − 1)2 − 1

192
(z − 1)3−

− 1
3072

(z − 1)4 + 13
61440

(z − 1)5 +O((z − 1)6) ,
(15)

whose radius of convergence is
√
4 + π2.

According to the previous relation we can write the solution of (1) in the form (Λ = −S)

W

(
AΛexp

[
− ξ2

2

])
= 1 +

1
2

(
− ξ2/2 + ln

AΛ
e

)
+
1
16

(
− ξ2/2 + ln

AΛ
e

)2

−

− 1
192

(
− ξ2/2 + ln

AΛ
e

)3

− 1
3072

(
− ξ2/2 + ln

AΛ
e

)4

+

+
13
61440

(
− ξ2/2 + ln

AΛ
e

)5

+O

((
− ξ2/2 + ln

AΛ
e

)6
)

.

(16)

The above solution shows that the charge distribution, in the case of a perfect inductor,
is symmetric about ξ = 0 and tends to a parabolic shape for AΛ� 1.
A comparison between analytical and numerical solution is offered by fig. 3 and the agree-

ment is more than satisfactory.
As a further comment we remark that the series converges for AΛ ≤ 41.4, which is a good

range for the specific problem we are considering.
It is also worth noting that it can be easily verified that the normalization constant can
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Fig. 3 – Comparison between analytical (line) and numerical (points) solution ρ (ξ) of the Haissinski
equation, for S = −1 and A = 1. The maximum error is less than 10−6.

be directly inferred and reads (δ = AΛ)

Ñ =
∫ ∞

−∞
ρ(ξdξ) � 3.1δ 1

3 , (17)

while the second-order normalized momentum can be written as

σ2
ξ =

1
Ñ

∫ ∞

−∞
ξ2ρ(ξ)dξ � 1.058(δ + 5) 1

6 . (18)

Therefore for large δ, and thus for large current, the r.m.s. of the distribution scales roughly
as Ñ

1
4 .
In conclusion it is also interesting to mention the possibility of exploiting an asymptotic

solution of the Haissinski equation valid for large δ values, namely [6]

W (z(ξ, δ)) ≈ ln z(ξ, δ)− ln (ln (z(ξ, δ)))+

+
∞∑

n=1

(−1)n
ln (z(ξ, δ))n

∞∑
m=1

(−1)mn! ln (ln (z(ξ, δ)))m

(n − m+ 1)!m!
,

(19)

with z(ξ, δ) = δ exp
[
− ξ2

2

]
.

The above expression can be used as bench-marking of the numerical solutions for values
above the convergence radius of the expansion (16).
We must however underline that the series (19), being an asymptotic expansion, cannot

be viewed as a real distribution since we cannot define a normalization factor, although the
series is convergent.
In a forthcoming note we will see how a two-variable generalization of the Lambert W -

function can be exploited to study problems associated with the beam distribution distortion
due to microwave effects.
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