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Abstract. – A gas column in a tube with a temperature gradient spontaneously begins to
oscillate when it is driven away from equilibrium. We observed a transition from the standing- to
the traveling-acoustic-wave modes through a quasiperiodic state using a looped tube attached
to a resonator. Through the measurements of entropy flow, we experimentally propose a
thermodynamical mode selection rule, which acts as a guiding principle for a sequence of
unstable modes appearing in nonequilibrium systems.

A gas column in a tube equipped with a stack of plates and adjacent heat exchangers spon-
taneously begins to oscillate when it is driven away from equilibrium by externally supplied
heat power. Such a thermoacoustic oscillation constitutes one of the dissipative structures in
nonequilibrium systems [1], and distinctively functions as a heat engine converting the heat
flow Q into the acoustic work flow I within the stack [2–5]. Experimental studies on thermoa-
coustic engines so far concentrated on standing-wave engines equipped with a resonator [6–8],
where a standing wave contributes to the mutual energy conversion between Q and I through
the irreversible thermodynamical process. More recently, however, traveling-wave engines
have been constructed by using a looped tube [9,10], where a traveling wave is responsible for
the energy conversion through the reversible thermodynamical process.

In this experiment, we have built a thermoacoustic engine by combining a looped tube
and a resonator. In that way both the standing- and traveling-wave modes having different
oscillating frequencies can be excited. In order to shed a new light on dissipative structures
from the thermodynamical point of view, we investigate an increase in the entropy flow S along
the stack associated with the thermoacoustic oscillation as well as that without the oscillation
by measuring energy flows in the present thermoacoustic engine. In this letter, we here for the
first time propose the existence of a mode selection rule according to which a mode having
a minimum increase in entropy flow is selected when more than one nonequilibrium mode is
possible [11]. This rule would play a crucial role in the thermodynamical interpretation of the
transition sequences observed in nonlinear dissipative systems [12,13].
c© EDP Sciences
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Fig. 1 – Schematic diagram of (a) the heart of a thermoacoustic prime mover and (b) the experimental
setup consisting of a resonator and a looped tube containing the assembly shown in (a) inside. The
origin of the coordinate x normalized with respect to the total length of the looped tube is taken
at the position where the pressure amplitude for the standing-wave mode takes its maximum in the
looped tube. The center of a stack is located at x = 0.32 in this scale.

Figure 1(a) schematically illustrates a stack and two heat exchangers with temperatures
TH and TC, all of which are contained in a tube filled with a working fluid. Axial heat flow QH,
a nonequilibrium parameter in this experiment, is supplied to the stack through the hot heat
exchanger. When QH exceeds some critical value Qcri, a gas column in the tube spontaneously
begins to oscillate. Under the steady-state operation of the engine, the heat flow QH entering
from the hot end of the stack is partly converted to the output power ∆I within the stack,
and the rest, QC, is removed from the cold end of the stack. The energy conservation law
assures the relation

QH = QC + ∆I. (1)

We focus on the entropy flow S [14] instead of entropy being a state function, since the
engine is in a nonequilibrium steady state. The entropy flow S is defined as S = Q/T
by using the heat flow Q passing through the cross-section at temperature T , and hence
those at the hot and cold ends of the stack are given as SH = QH/TH and SC = QC/TC,
respectively. Consequently, the increase in the entropy flow ∆S through the stack is given
by ∆S = QC/TC − QH/TH. When the oscillation is absent, the relation QH = QC holds.
Therefore, ∆S is given by

∆S =
(

1
TC

− 1
TH

)
· QH > 0. (2)

On the other hand, when the oscillation is self-sustained, the output power ∆I must be finite
and hence ∆S is obtained as

∆S =
(

1
TC

− 1
TH

)
· QH − ∆I

TC
. (3)

If the energy conversion proceeds through the reversible process, ∆S should be zero and
then the engine efficiency ∆I/QH is given by Carnot’s efficiency (= 1 − TC/TH). It is of
vital importance to note here that we can experimentally determine ∆S as a function of the
nonequilibrium parameter QH through the measurements of ∆I, TH and TC, by using eq. (3).

Figure 1(b) shows the schematic illustration of the present thermoacoustic engine consisting
of a looped tube and a resonator. The total lengths of the loop and the resonator are 1.23 m
and 1.00 m, respectively. The looped tube is made of Pyrex glass with its internal diameter
of 40 mm, and the resonator is made of stainless steel and its internal diameter is 73 mm. A
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Fig. 2 – Axial distribution of the work flow measured when QH = 86 W. A shaded region and a vertical
line represent a stack and the position connecting the looped tube with a resonator, respectively. The
output power ∆I is shown as the difference in the work flow between hot and cold ends of the stack.
A negative slope of I in regions except for the stack represents the dissipated power per unit length
in the looped tube. The power supplied to the resonator is represented by the discontinuous drop of
I at x = 0.5.

ceramic stack, having many square channels with their sides of 0.93 mm, is located in the loop
together with hot and cold heat exchangers. A sheathed thermocouple was inserted into the
hot heat exchanger to monitor its temperature TH. An electrical heater was wound around
the hot heat exchanger to feed the heat flow QH to the stack, and the cooling water pipe was
wound around the cold heat exchanger to keep its temperature TC at room temperature. Air
at one bar atmospheric pressure was used as the working fluid. While the value of Qcri is
found to depend on the position of the assembly shown in fig. 1(a), the value of Qcri = 60 W
was obtained when the setup with the geometry shown in fig. 1(b) was employed [15].

The fundamental frequency of the acoustic oscillation induced above Qcri is 100 Hz. We
simultaneously measured both the pressure and velocity of the oscillating gas (see [8] in more
details) along the axial coordinate x directed anticlockwise in the loop, by using pressure
transducers and laser Doppler velocimeter, respectively, and determined the work flow from
the equation

I = AP · U =
1
2
Apu cos Φ, (4)

where a bar indicates a time average and A is the cross-sectional area of the gas passage, p is
the amplitude of the pressure P , u is that of the cross-sectional mean velocity U and Φ is the
phase lead of U relative to P .

The axial distribution of the work flow I measured when QH = 86 W, just above Qcri, is
shown in fig. 2, where the flow direction is indicated by its sign. The slope of I is always
negative in all the regions outside the stack, showing the dissipation of the acoustic power
on the tube wall. On the other hand, a positive slope does exist in the stack, indicating the
production of the acoustic power emitting from the stack. Now we see that the output power
∆I of the present engine is given by a total increase of I, which can be read off from the graph
as the difference in I between the hot and cold ends of the stack to be about 70 mW. It should
be mentioned here that I crosses zero in the stack. This means that Φ in eq. (4) is π/2 and
that the energy conversion is achieved by a standing wave. In other words, the present engine
begins to oscillate in a standing-wave mode [16]. In a traveling-wave engine, the work flow I
runs from TC to TH without changing the flow direction within the stack [10]. Therefore, we
can determine not only the magnitude of the output power ∆I, but also whether the induced
oscillation is the standing- or traveling-wave mode, through the work flow measurements.

Figures 3(a) and (b) show ∆I and TH as a function of QH, respectively. The variation
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Fig. 3 – The variation of ∆I (a), TH (b) and ∆S (c) as a function of QH, when the gas oscillations are
absent (solid circles) and present (open circles). Open diamonds in (b) are measured when the gas
oscillations are suppressed and those in (c) represent the corresponding variation of ∆S. The vertical
dashed line represents the critical heat flow Qcri = 60 W.

Fig. 4 – QH-dependence of TH (solid and open circles) in the present engine. The variation of the
square of pressure amplitudes for standing- (open squares) and traveling- (solid squares) wave modes
in the present engine is also shown as a function of QH. Vertical dotted lines represent boundaries
among the no-oscillation, standing-wave mode, quasiperiodic states and traveling-wave mode. The
dotted line with open diamonds represents the variation in TH when the gas oscillations are absent,
and the dashed line is measured in a looped-tube engine without a resonator in fig. 1(b).

of TH, measured when the oscillations are suppressed, is also shown in fig. 3(b) by a dotted
curve. In the nonoscillating region 0 ≤ QH < Qcri, TH increases monotonically from TC with
increasing QH, while ∆I remains zero. An increase in the entropy flow ∆S in the absence of
oscillations is simply given by eq. (2). As shown by the dotted curve in fig. 3(c), ∆S is zero
only in the equilibrium state with QH = 0, and increases with increasing QH. The positive
∆S can be attributed to the irreversible thermal conduction through the solid walls and the
working fluid.

In the region QH ≥ Qcri, the self-sustained oscillation of the standing-wave mode is in-
duced. This is evidenced by a finite ∆I above Qcri. The output power ∆I begins to increase
linearly from Qcri with increasing QH, while TH vs. QH reduces its slope discontinuously at
Qcri. Consequently, TH becomes smaller than that without oscillations. We deduced an in-
crease in the entropy flow ∆S in the presence of oscillations by inserting the data above into
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eq. (3), and plotted it in fig. 3(c) by open circles with a thick full curve. Notably, ∆S in
the presence of the gas oscillations lies consistently below the dotted line above Qcri. This
means that the value of ∆S is definitely lowered by the emergence of the standing-wave mode
oscillation in the range QH above Qcri. It is clear from eq. (3) that the reduction in ∆S is
caused by both the production of ∆I and the reduction in TH, but the latter turned out to
reduce ∆S much more than the former. Indeed, ∆I and TH contributions were 3 and 97% to
the total reduction in ∆S, respectively, when QH = 86 W. This enables us to determine the
∆S-QH relation only from the TH-QH relation without measuring ∆I in the present engine.

On the basis of the experimental findings above, we measured the TH vs. QH relation up
to 230 W to determine the ∆S-QH relation in the further higher QH region. As shown by
the circles in fig. 4, TH in the present engine increases linearly above Qcri (= 60 W), but the
slope of TH becomes small, when QH exceeds 160 W. This is brought about by a change in the
oscillating mode from the standing to the quasiperiodic state consisting of both the standing-
and traveling-wave modes. Here the traveling-wave mode refers to the acoustic traveling wave
with a fundamental frequency of 273 Hz running around the loop in the direction from TC to
TH through the stack. Only the traveling-wave mode is excited in a looped tube engine [10].
The dashed line in fig. 4 represents the TH-QH curve measured for the looped-tube engine
after removing the resonator from the present assembly in fig. 1. Obviously, the dashed line
due to the traveling-wave mode lies above the solid line due to the standing-wave mode above
Qcri, but crosses with it at about 200 W. Since TH vs. QH behavior directly reflects the ∆S
vs. QH relation, we conclude that the superposition of the traveling-wave mode above 160 W
contributes to a further reduction in ∆S, in comparison with that due to the nonoscillating
mode and that due to the standing-wave mode.

As is presented by three different lines in fig. 4, there definitely exist three different modes
in the present engine, nonoscillating-, standing- and traveling-wave modes. Indeed, ∆S > 0
holds in any of these modes, but the present engine clearly demonstrates successive mode
transitions with increasing QH, in such a way that the mode with the lowest ∆S is always
selected. The argument above leads us to propose a thermodynamical mode selection rule: a
mode having a minimum increase in entropy flow is selected among all permissible modes. In
other words, the mode transitions in the present engine occurs because of the crossing of ∆S
inherent in each mode on a ∆S-QH diagram.

In the quasiperiodic state of the present engine, the power spectra of the measured pressure
oscillations are found to consist of sharp peaks at frequencies given by a linear combination
of the fundamental frequencies of the standing- and the traveling-wave modes, as well as their
higher harmonics. Incorporated in fig. 4 is the square of the pressure amplitudes p2

S and p2
T

at fundamental frequencies for the standing- and traveling-wave modes measured at x = 0.11.
As can be seen, p2

S increases linearly in the region above Qcri, but, in the quasiperiodic
states, p2

S decreases after showing a maximum. On the other hand, p2
T increases quickly above

QH = 160 W. A smooth variation of p2
S and p2

T with QH is responsible for a continuous
change in the slope of TH, which is in contrast to the discontinuous one in TH observed
when the standing-wave mode emerges. We believe that a fraction of these two modes is
determined so as to minimize ∆S through nonlinear interactions between them in accordance
with the mode selection rule. Further increase in QH would result in the transition from the
quasiperiodic states to the traveling-wave mode, where p2

S decreases to zero and TH eventually
approaches the dashed line in fig. 4. Indeed, we have observed a complete transition to the
traveling-wave mode in a similar, but smaller thermoacoustic engine in spite of the limited
power up to 230 W.

In conclusion, we built a thermoacoustic engine consisting of the looped tube and the
resonator, and observed successive transitions from the standing- to traveling-wave modes
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through the quasiperiodic state with increasing nonequilibrium parameter QH. It was found
that the emergence of the spontaneous gas oscillations and the transition to the traveling-wave
mode can be well understood in terms of a minimum increase in entropy flow through the
stack. The mode selection rule that we have proposed would also provide thermodynamical
interpretation for the transition sequences observed in other nonlinear dissipative systems.
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