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Abstract. – We drive a d-dimensional Heisenberg magnet using an anisotropic current. The
continuum Langevin equation is analysed using a dynamical renormalization group and numer-
ical simulations. We discover a rich steady-state phase diagram, including a critical point in a
new nonequilibrium universality class, and a spatiotemporally chaotic phase. The latter may
be “controlled” in a robust manner to target spatially periodic steady states with helical order.

How does an imposed steady current of heat or particles alter the dynamics of the isotropic
magnet? To answer this question, we extend the equations of motion for the classical O(3)
Heisenberg model [1] to include the effects of a uniform current in one spatial direction while
retaining isotropy in the order parameter space. The resulting model is a natural generalization
of the driven diffusive models of [2] to the case of a 3-component axial -vector order parameter
and, as such, is an important step in the exploration of dynamic universality classes [3] far
from equilibrium [4]. The form of the local molecular field in which spins precess in this
driven state is strikingly different from that at equilibrium [1], and is responsible for all the
remarkable phenomena we predict, including a novel nonequilibrium critical point and, in a
certain parameter range, a type of turbulence.

Here are our results in brief: i) Despite O(3) invariance in the order-parameter space, the
dynamics does not conserve magnetization. ii) As a temperature-like parameter is lowered, the
paramagnetic phase of the model approaches a nonequilibrium critical point in a new dynamic
universality class. iii) Below this critical point, in mean-field theory without stochastic forcing,
paramagnetism, ferromagnetism and helical order are all linearly unstable. iv) Numerical
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studies in space dimension d = 1 show spatiotemporal chaos in this last regime. This chaos,
when “controlled”, is replaced by spatially periodic steady helical states. These predictions
should be testable in experiments on isotropic magnets carrying a steady particle or heat
current, as well as in simulations of a magnetized lattice-gas which we discuss at the end of
this letter.

To construct our equations of motion, recall that at thermal equilibrium at temperature
T the probability of spin configurations {�Si} of a general nearest-neighbor Heisenberg chain
with sites i is ∝ exp[−H/T ], with an energy function

H = −
∑

i

Ji
�Si · �Si+1, (1)

where Ji is the exchange coupling between i and i+1. A spin �Si at i precesses as �̇Si = �Si×�hi,
where

�hi = −∂H

∂�Si

= Ji
�Si+1 + Ji−1

�Si−1 (2)

is the local molecular field. Replacing Ji → J(x) and �Si → �S(x) in the continuum limit,

yields [5] �̇S(x) = J(x)�S × ∂2
x
�S + (dJ/dx)�S × ∂x

�S + · · · . For the physically reasonable case
where J varies periodically about a mean value J0, this reduces for long wavelengths to
�̇S(x) = J0

�S × ∂2
x
�S, which is invariant under x → −x, even if the H is not. The dynamics

conserves
∑

i
�Si since it commutes with H.

Now drive some background degrees of freedom in, say, the x̂-direction, retaining isotropy
in spin space. These could be some mobile species —particles, vacancies, heat— or some
nonconserved internal variables. Possible microscopic realizations are discussed towards the
end of the paper. For now, note that the dynamics in this nonequilibrium state does not
follow from an energy function, and must be constructed anew. If we average over these
background variables, their effect should be simply to modify the equations for the �Si by
allowing terms forbidden at thermal equilibrium. While many such terms are permitted, only
two are relevant : i) asymmetric exchange, i.e., �hi = J+

�Si+1+J−�Si−1 yielding a precession rate
g�S×∂2

x
�S+λ�S×∂x

�S, with λ ∝ J+−J− proportional to the driving rate; and ii) nonconserving
damping and noise. Both i) and ii) were ruled out [1] at thermal equilibrium only because the
dynamics had to be generated by (1) and (2). Note that the λ term, while rotation-invariant
in spin space, is not the divergence of a current [6]. The nonlinearity λ�S × ∂x

�S will thus
generate [7–9] nonconserving noise and damping terms even if these are not put in at the
outset.

For a general dimension d ≡ d⊥ +1, with anisotropic driving along one direction (‖) only,
the above arguments yield, to leading orders in a gradient expansion, the generalized Langevin
equation

∂�S

∂t
=

(
r‖∂2

‖ + r⊥∇2
⊥

)
�S − v�S − u

6
(�S · �S)�S − λ�S × ∂‖�S +

+g‖�S × ∂2
‖ �S + g⊥�S ×∇2

⊥�S + �η, (3)

where we have allowed for spatial anisotropy in the coefficient of the usual spin precession term.
The Gaussian, zero-mean nonconserving noise �η satisfies 〈ηα(x, t)ηβ(x′, t′)〉 = 2B δαβ δ

d(x −
x′)δ(t− t′).

In the equilibrium, isotropic limit, λ = u = v ≡ 0, r‖ = r⊥ ≡ r, the noise strength vanishes
at zero wave number, and (3) has a critical point where the renormalized r → 0. In the driven
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state, since the dynamics and noise are nonconserving, the critical point is v = 0, which in
general takes place on a curve in the temperature/driving-force plane. As the drive is taken
to zero, there should be a crossover from nonequilibrium to equilibrium critical behavior. Our
primary interest is in the behavior at a given nonzero driving rate, for which it suffices to
vary the temperature-like parameter v in (3), keeping the rest fixed (with r‖, r⊥, u > 0). For
v > 0 (the paramagnetic phase) all correlations clearly decay on finite length scales ∼ 1/

√
v

and time scales ∼ 1/v, and nonlinearities are irrelevant. Let us focus first on the nature of
correlations on the critical surface v = 0. Here, we expect an anisotropic scaling form for
the correlation function C(x, t) ≡ 〈�S(x + x′, t+ t′) · �S(x′, t′)〉: C(x, t) = x2χ

‖ F (t/xz
‖, x⊥/x

ζ
‖),

where F is a scaling function. In the linear approximation to (3) the roughening, growth, and
anisotropy exponents are, respectively, χ = 1− d/2, z = 2, and ζ = 1, and F is analytic in its
arguments.

We now include the effect of the nonlinear terms in (3) via a standard implementation
of the dynamical renormalization group (DRG) [10] based on a perturbation expansion in
λ and u. Rescaling x‖ = bx′‖, x⊥ = bζx′

⊥, t = bzt′ and �S = bχ�S′, where b > 1 is an
arbitrary parameter, the coefficients in eq. (3) transform as r′‖ = bz−2r‖, r′⊥ = bz−2ζr⊥,
B′ = bz−2χ−ζ(d−1)−1B, u′ = b4−du, λ′ = bχ+z−1λ, g′‖ = bχ+z−2g‖ and g′⊥ = bχ+z−2ζg⊥. λ
and u are thus relevant for dimension d < 4, and g‖ and g⊥ are irrelevant for d near 4. In units
where the ultraviolet cutoff is 1, λ and u enter the perturbation theory in the dimensionless
combinations τ ≡ (1/2π3)λ2 B/

√
r3‖ r

3
⊥ and κ ≡ (1/2π3)uB/

√
r‖r3⊥. At the critical point

v = 0, setting the irrelevant g‖ and g⊥ to zero, for d = 4 − ε, we find [8, 9] to O(ε) the
differential recursion relations

∂r‖
∂l

= r‖

(
z − 2 +

π

4
τ

)
,

∂r⊥
∂l

= r⊥

(
z − 2ζ +

5π
48

τ

)
,

∂B

∂l
= B

[
z − 2χ− ζ(d− 1)− 1 +

π

32
τ

]
,

∂τ

∂#
= τ

(
εζ − 35

64
πτ

)
,

∂κ

∂#
= κ

(
ζε− 11

24
πζκ− π

2
τ

)
+

27
16
πζ τ2. (4)

Since we are working at v = 0, we seek a fixed point that is stable with respect to perturbations
in the remaining directions in the parameter space. For ε = 4− d > 0 we find the nontrivial
stable fixed point τ∗ = 64ε/(35π), κ∗ = 36[1 +

√
1409]ε/385π. The critical exponents for

d < 4, to lowest order in ε, are z = 2− 16ε/35, ζ = 1− 2ε/15 (anisotropic scaling) and (since
u plays no role at O(ε)) χ = 1 − d/2. These exponents clearly place this critical point in a
new universality class. A more detailed analysis, including the approach to the critical point,
will appear elsewhere [9].

We now investigate the low-temperature v < 0 phase, in the absence of noise. It is conve-
nient to work with dimensionless variables, obtained by rescaling x⊥, x‖, t and �S in eq. (3);
this leaves λ as the only parameter in the equation of motion. There are two static, spatially
homogeneous steady states —a “paramagnetic steady state” 〈Sα〉 = 0, and a “ferromagnetic
steady state” 〈S1〉 = 〈S2〉 = 0 and 〈S3〉 = 1. It is straightforward to see from (3) that both
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Fig. 1 – Log-log plot of y =
√

ω2|M3(ω)|2 vs. ω showing the 1/ω2-dependence of the power spectrum
over approximately 1.5 decades.

these stationary solutions are linearly unstable [8, 9]. We next look for static, spatially inho-
mogeneous steady states, a natural candidate being the helical state. Defining ρ ≡

√
S2

1 + S2
2

and φ ≡ tan−1(S2/S1), eq. (3) for g‖ = g⊥ = 0 becomes

∂ρ

∂t
= ∇2ρ− ρ(∇φ)2 + ρ− (ρ2 + S2

3)ρ− λρS3∂‖φ,

∂φ

∂t
= ∇2φ+

2
ρ
(∇ρ) · (∇φ) +

λ

ρ

(
S3∂‖ρ− ρ∂‖S3

)
,

∂S3

∂t
= ∇2S3 + S3 − (ρ2 + S2

3)S3 + λρ2∂‖φ. (5)

A regular helix ρ = a, φ = px‖ and S3 = b (a, b and p are arbitrary constants) is a steady-state
solution if 2b2 = 1−a2(1+λ2)±√

(a2(λ2 + 1)− 1)2 − 4a4, and 2p = −λb±√
λ2b2 − 4(R2 − 1),

where R =
√
a2 + b2 is the magnitude of each spin. The only free parameter a is bounded by

a < (3 + λ2)−1/2 from the requirement that b be real. Unfortunately, even this steady state
shows a linear instability, triggered by the growth of S3 [8].

Having failed to find any stable static steady states analytically, we solve (3) numerically for
d = 1 without noise, for a range of generic initial conditions. To avoid numerical instabilities
we adopt an operator-splitting method [11] —we solve the dissipative part using the standard
Euler method and the drive part [9] by rotating each spin by an azimuthal angle |h(x, t)|∆t
about its computed local magnetic field h. With our choice of ∆x = 1 and ∆t = 0.0001 on a
system of size N = 200 with periodic boundary conditions, we find that we avoid numerical
instabilities and finite-size effects.

We find that the time series of the magnetization and energy density E = N−1
∫
dx(∇�S)2

never settle to a constant value; the motion could therefore be either temporally (quasi)periodic
or chaotic. Figure 1 shows that the power spectrum of M3 ≡ ∫

x
S3 goes as 1/ω2. The power

spectrum of E also shows a similar behavior. This suggests that the dynamics is temporally
chaotic [12].
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Fig. 2 – Space-time plot of the signed local pitch, sgn(p) ≡ sgn(∂xφ) (black (+1), white (−1)),
revealing spatiotemporal chaos.

Space-time plots of local quantities, such as the signed local pitch, sgn(p) ≡ sgn(∂xφ)
(fig. 2), strongly suggest the presence of spatiotemporal chaos [12]. These results are prelim-
inary, and only for d = 1. We shall characterize this behavior in greater detail elsewhere [9],
including studies of the dependence of the number of positive Lyapounov exponents on system
size and the behavior for d > 1.

The helix solutions of eq. (5) for v < 0 are an infinite family of unstable spatially periodic
steady states (parametrised by a) of the type discussed in [13]. Can chaos in our model be
controlled so as to stabilize and target [13] these helical states? The control of spatiotemporal
chaos in PDEs [13,14] is not nearly as well developed as that in finite-dimensional dynamical
systems [13]. Accordingly, it is significant that we are able to stabilize, target, and hence
control spatiotemporal chaos in our model, as we now show.

For instance, in order to stabilize a specific helical configuration (with fixed a, b and p),
we could in principle wait till the dynamics (presumably ergodic) eventually leads to this
configuration, after which we apply small perturbations to prevent S3 from deviating from
the value b (recall that the instability of the helical state was led by S3). This prescription
successfully stabilizes the prescribed helix.

In order to target this prescribed helix, we add to (5) terms which would arise from a
uniaxial spin anisotropy energy V3 = r3(S2

3 − b2)2 or V3 = r3(S3 − b)2. We find that a
sufficiently large and positive r3 forces S3 to take the value b exponentially fast starting from
arbitrary initial configurations. The subsequent evolution, given by eq. (5) on setting S3 = b,
can be recast as purely relaxational dynamics,

∂ρ

∂t
= −δF

δρ
,

∂φ

∂t
= − 1

ρ2

δF

δφ
, (6)

where the “free-energy functional” F has the form of a chiral XY model,

F =
1
2

∫
x

[
(∇ρ)2 + ρ2(∇φ)2 − (ρ2 + b2) +

1
2
(ρ2 + b2)2 + λbρ2∂‖φ

]
. (7)

Using the chain rule, it is easy to see that dF/dt =
∫

x
[−(δF/δS1)2− (δF/δS2)2] < 0, hence F

is a Lyapunov functional for the dynamics. Completing the squares, we see that ∂‖φ appears in
F in the combination (1/2)ρ2(∂‖φ+λb/2)2, which is minimized by the helix φ = −(1/2)λbx‖.
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Starting from any initial configuration, the system plummets towards this unique helical
minimum of F .

Let us now see whether our control is robust against noise. We modify (6) by including the
noise �η in eq. (3), and ask for the statistics of small fluctuations with Fourier components ρ̃k(t)
and φ̃k(t) about the controlled helical state, where 2π/L < k < Λ for a system of linear extent
L. It is clear from (6) that the means 〈ρ̃k〉 and 〈φ̃k〉 decay exponentially to zero: the relaxation
time for ρ̃k is finite at small k, whereas that for φ̃k goes as k−2. To calculate the variances,
note that the dynamics is governed in the mean by the Lyapounov functional (7), and that the
noise is spatiotemporally white. It follows [15] that the steady-state configuration probability
P [ρ, φ] ∝ e−cF , where c is an effective inverse temperature. F � ∫

[const(ρ̃)2 + const(∇φ̃)2]
for small fluctuations about the helical minimum, i.e., P is approximately Gaussian, so that
〈|φ̃k|2〉 ∼ k−2 and 〈|ρ̃k|2〉 ∼ const for small k. Thus the variance 〈ρ̃2〉 =

∫
k
〈|ρ̃k|2〉 is L-

independent for L → ∞ in any dimension d, whereas 〈φ̃2〉 = ∫
k
〈|φ̃k|2〉 diverges as L and lnL,

respectively, for d = 1 and 2, and is finite for d > 2. Thus, occasional excursions from the
controlled state as a result of the noise do not lead to an instability of the targeted state for
d > 2; the behavior for d ≤ 2 is no worse than for a thermal equilibrium XY model.

Having arrived at the continuum equations (3) based only on symmetry arguments and con-
servation laws, we now suggest ways in which the driving nonlinearity in (3) may be realised.
a) Consider the isotropic magnet on a lattice whose unit cell lacks x̂ → −x̂ symmetry. Now
subject the spins to a spatiotemporally random, isotropic, nonconserving noise source. The
lack of invariance under x-inversion together with this nonequilibrium noise should give rise,
via an interplay of nonequilibrium noise and the electrons participating in the exchange inter-
action, to the �S×∂x

�S term. We admit, however, that we do not have a microscopic derivation
of this. b) Consider the asymmetric exclusion process (ASEP) [2] on a 1-dimensional lattice,
each site i of which can be either vacant (ni(t) = 0) or occupied by one particle (ni(t) = 1) at
time t. Each particle has an attached Heisenberg spin and may hop to the nearest neighbor
at the right (left), if vacant, with probability p (q). The spin �Si(t) at an occupied site i is the
spin of the occupying particle. The local field at site i is �hi(t) = Ji−1,i

�Si−1(t) + Ji+1,i
�Si+1(t).

The required asymmetric exchange is achieved by making the J ’s dynamical. Recall that the
exchange coupling between, say, i − 1 and i is operative at time t only if ni−1(t)ni(t) = 1.
Imagine that the local exchange coupling emanating from a given site depended on some inter-
nal degree of freedom with a short relaxation time, as follows: Ji,i±1(t) = J1 if ni(t−1) = 1; if
not, Ji,i±1(t) = J2. Assume, for simplicity, that the particles can hop only to the right. Then
a configuration 111 at sites i−1, i, and i+1 at time t was either already present at time t−1
or arose from 011 (by a right hop from i − 2). Thus, for 111 configurations, Ji−1,i will be a
weighted average of J1 and J2, while Ji+1,i will be J1. In the continuum limit, and averaging
over the particle dynamics, we will get the driving term in (3), with λ ∝ p−q. Such averaging
is justified if the hopping species has a faster dynamics than the spins (for example, a smaller
dynamical exponent). Alternatively, allowing evaporation-deposition in the ASEP renders the
“particles” fast without qualitatively altering the derivation above for the effective asymmetric
exchange. Of course, particle nonconservation induces spin nonconservation trivially in this
case. The work of [5] on moving space curves suggests another promising approach to finding
realizations of our model.

In conclusion, we have studied the interplay of dissipation, precession, and spatially
anisotropic driving on the dynamics of a classical Heisenberg magnet in d space dimensions.
We have found a nonequilibrium critical point which we have shown, in an expansion in
ε = 4 − d, to be in a new dynamical universality class. We have presented evidence of spa-
tiotemporal chaos in the mean-field dynamics of the model, at least in d = 1, and have shown
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how this chaos can be controlled to yield helical order. Our work reinforces the idea that
spatiotemporal chaos is a generic feature of driven, dissipative, spatially extended systems
with nonlinear reactive terms. Further properties of this remarkable model, including the
Lyapounov spectrum of the chaotic state, the possibility of complex ordered states or spa-
tiotemporal chaos for d > 1, possible experimental realizations, and the crossover between
equilibrium and driven behavior, will be discussed elsewhere [9].
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