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PACS. 73.23.-b – Electronic transport in mesoscopic systems.

PACS. 72.15.Rn – Localization effects (Anderson or weak localization).

PACS. 72.80.Ng – Disordered solids.

Abstract. – We show that the distribution P (g) of conductances g of a quasi–one-dimensional
wire has nonanalytic behavior in the insulating region, leading to a discontinuous derivative in
the distribution near g = 1. We give analytic expressions for the full distribution and extract
an approximate scaling behavior valid for different strengths of disorder close to g = 1.

It is well known that the probability distribution P (g) of the (dimensionless) conductances
g of a disordered conductor is Gaussian in the deeply metallic regime and log-normal in
the deeply insulating regime [1]. It has been proposed recently [2], that for a quasi–one-
dimensional (1D) wire with mean dimensionless conductance ḡ � 1, P (g) has a sharp cutoff
beyond g = 1. To be sure, in one dimension, when g ≤ 1, P (g) drops discontinuously to
zero at g = 1. In higher dimensions the discontinuity will be smeared in some way, but it is
difficult to say how much of it will survive. Using the saddle point method developed in [2],
we are able to show here that nonanalytic behavior remains near g = 1 at least in quasi-1D
systems. One should note that the exact results for the mean and variance of the conductance,
obtained within the nonlinear sigma model [3], do not give any clue on the abrupt change of
P (g) near g = 1. The existence of the sharp cutoff for all ḡ � 1 has recently been confirmed
numerically, while the exact shape of the distribution very close to g = 1 seems to be different
from a log-normal distribution [4–8].

In the present work, we focus on the insulating region in quasi-1D near |g − 1| � 1, in
order to understand better the nature of the unexpected sharp feature in the distribution. For
simplicity, we will restrict our discussions to the unitary case of broken time-reversal symmetry.
We propose from a simple generalization of [2], that for large enough disorder the distribution
has a nonanalyticity near g = 1, giving rise to large discontinuities in its derivatives. We
c© EDP Sciences
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obtain, e.g., that in the insulating limit, the leading contribution to the distribution P (g) at
|g − 1| � 1, is given by

P (g) ∝




Φ
(√

Γ
(

ν − 1
2Γ

))
− Φ

(√
Γ
(

ν1 − 1
2Γ

))
+ C, g ≥ 1 + α,

Φ
(

1√
Γ

)
− Φ

(√
Γ
(

ν1 − 1
2Γ

))
+ C, g < 1 + α,

(1)

where Φ is the error function, ν = cosh−1
√

1/(g − 1), ν1 = cosh−1
√

2/g, and α =
1/ cosh2(3/2Γ) [9]. The disorder parameter Γ = ξ/L, where ξ is the localization length and L
is the system size (Γ � 1 would correspond to metals and Γ � 1 corresponds to insulators).
The term C is independent of g, but depends on Γ. The discontinuity is at g = 1 + α. For
the case considered here, Γ � 1 and α ∼ e−3/Γ. From (1) it follows that P ′ = dP (g)/dg has
a discontinuity at g = 1+α, with P ′ ∼ −e2/Γ very large for g � 1+α (growing exponentially
with increasing disorder) and |P ′| � 1 for g < 1 + α. Note that, in the limit Γ → 0, the
distribution would have an essential singularity at g = 1.

The above results are obtained assuming Γ � 1, describing the insulating limit. As Γ
increases, but still in the insulating regime, the dominant contribution remains the same with
renormalized parameters, and our results remain qualitatively valid. In the metallic limit the
singularity is absent, giving rise to the possibility that the singularity disappears across the
crossover region (Γ ∼ 1/2), where our current approximations are not valid.

In addition to the sharp structure, our results suggest an approximate scaling behavior for
different strengths of disorder near g ∼ 1. As is evident from (1), in the expression for the
ratio P (g)/P (1), the dominant dependence on the disorder parameter Γ and on g− 1 appears
only in the combination

√
Γ(ν − 1/2Γ). Our numerical results agree with this approximate

scaling. We also find that the distribution P (g) for g � 1 is a slowly varying function of g,
which is approximately constant close to g = 1. This leads to an exponential distribution for
P (ln g) in this region, rather than the log-normal distribution proposed in [2], and agrees with
various existing numerical results [4, 6]. For Γ � 1, the numerical results suggest that the
exponential form crosses over to the log-normal form for g � 1.

We now briefly discuss the details of the method which is based on a simple generalization
of [2]. The probability distribution p(λ) of the N variables λi, where λi are related to the
transmission eigenvalues Ti of an N -channel quasi-1D wire by λi = (1 − Ti)/Ti, satisfy the
well-known DMPK equation [10], whose solutions in the metallic and insulating regimes can
be written in the general form [11]

p(λ) =
1
Z

exp
[ − βH(λ)

]
, (2)

where Z =
∫ ∏

i dλi exp[−βH] is a normalizing factor independent of λi, H(λ) may be inter-
preted as the Hamiltonian function of N classical charges at positions λi, and β = 2 for the
unitary case. Since the dimensionless conductance is given by
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i

1
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, (3)

the probability distribution P (g) can be written as
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Following [2], we define a “Free energy”:

F (λ) =
N∑
i

iτ

1 + λi
+ βH (5)

such that the distribution can be written as

P (g) =
1
Z

∫ ∞

−∞

dτ

2π
eiτg

∫ ∞

0

N∏
i=1

dλi exp
[ − F (λ)

]
. (6)

It has been shown in [2] that separating out the lowest eigenvalue λ1 and treating the rest
of the eigenvalues as a continuum beginning at λ2, the distribution can be obtained within a
generalized saddle point approximation, given by

P (g) =
∫ ∞

0

dλ1

∫ ∞

λ1

dλ2e
−S , (7)

where
S = − 1

2F ′′ (g − F ′)2 + F 0 (8)

is the saddle point action, obtained from a saddle point free energy,

Fsp = F 0 + (iτ)F ′ +
(iτ)2

2
F ′′. (9)

The insulating region in this model is given by x2 � 1, and also x2 � x1, where sinh2 xi = λi.
The saddle point free-energy terms in this limit were calculated to be [12]
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]
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Since 1/2|F ′′| is exponentially large in the insulating regime, the saddle point solution is given
by putting the coefficient of the term in the action S equal to zero, namely g = F ′, which
then gives

coshx1sp =
1√
g

. (13)

As pointed out in [2], the saddle point solution is valid only for g < 1, since coshx1 ≥ 1, while
the g > 1 region is determined by the boundary values of x1 = 0 and x2 = 2/πΓ. While this is
a good approximation on both sides of g = 1, the fact that the boundary of the saddle point
solution is at g = 1 makes it possible that the approximation is not accurate enough very
close to g = 1. We will show below that at the next level of approximation suggested in [2],
the region close to g = 1 can be better described by saddle point solutions valid on both sides.
This improved approximation immediately leads to the nonanalyticity mentioned before.

It was shown in [13] that while separating out the lowest eigenvalue gave qualitatively
good results both in the metallic and insulating regimes, it is important to separate out one
additional eigenvalue to obtain good agreement with numerical and available exact results in
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the insulating and crossover regimes because the separation between the eigenvalues becomes
large. The extension is straightforward, and the distribution P (g) now has an additional
integral over λ3, which is the beginning of the continuum that represents the rest of the
eigenvalues. It is clear that the insulating limit is characterized by x3 � x2 � 1 for typical
values of xi, and that F ′ in this limit will now be given by [13]

F ′ ≈ 1
cosh2 x1

+
1

cosh2 x2

. (14)

F ′′ now has the same expression as (12), with x2 replaced by x3, while F 0 is given by (10)
with x1, x2 replaced by x2, x3 plus additional terms involving x1:
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x1, x2, x3

)
= F 0

(
x2, x3

)
+ Γx2

1 −
1
2
ln

(
x1 sinh(2x1)

)
. (15)

The saddle point solutions for x3 and x2 are now given by x3sp = 3/2Γ, which is indepen-
dent of g and

coshx2sp =
1√

g − 1/ cosh2 x1

, (16)

obtained again from g = F ′. Since x2 � 1, the additional term in F ′ is exponentially small,
and usually negligible. However, close to g = 1, this is the term that allows the saddle point
solution to be valid on both sides of g = 1. The fluctuation correction to the x2 integral
contributes an additional factor e2x2sp , and we are left with the final integral

P (g) ∝
∫ x1 max

x1 min

dx1e
−Γx2

1+ln x1−Γx2
2sp+3x2sp . (17)

We have used finite limits in the integral because the saddle point solution of x2 must be
real and also we require that x3sp > x2sp. This gives x1 min = Re[cosh−1

√
1/(g − α)], α =

1/ cosh2(3/2Γ), and x1 max = cosh−1
√

2/g. The crucial point is that the restriction x1 min is
zero for all g ≥ 1 + α, but becomes finite for g < 1 + α, with a discontinuous slope. It is the
universal nature of this constraint which will eventually lead to the sharp changes in P (g) at
g = 1 + α.

In the limit g → 1 and Γ � 1, the upper limit of the integral x1 max � 1. We can therefore
neglect the x2

1 term in (17). Changing variables to x2 and rewriting lnx1, we obtain a simple
integral,

P (g) ∝
∫ x2 max

ν1

dx2e
−Γx2

2+x2 (18)

with ν1 as defined after (1), and x2 max = ν for g > 1 + α, but 3/2Γ for g < 1 + α. The
integral immediately leads to eq. (1). It is easy to see from (1) that the first derivative has a
discontinuity at g = 1+ α and is large, of order e2/Γ for g > 1 + α. Figure 1 shows the sharp
changes at g = 1+α according to eq. (1). Since ν1 in this region is only weakly dependent on g,
this also leads to an approximate scaling behavior of P (g) as a function of z =

√
Γ(ν − 1/2Γ).

While the g-dependent contribution comes from the x2 integral, where x2sp < x3sp, there
is a contribution to P (g) from integral over x2 > x3sp. The x3 integral in this case is given
by the boundary value at x3 = x2, and the fluctuation correction to the x2 integral becomes
of order unity. The resulting integral leads to a g-independent but Γ-dependent term giving
C ≈ e3/Γ[1− Φ(2/

√
Γ)].
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Fig. 1 – P (g)/P (1) from eq. (1) for different values of Γ.

In the above, we considered the case Γ � 1, where x3 � x2 � 1 and only the leading-
order terms were kept in the free energy. For weaker disorder but still in the insulating side,
the next-leading-order terms will become important. First of all, the lnx2 term arising from
F 0(x2, x3) in (15) will start to contribute. Second, the next-leading-order contributions to
F 0 will contribute some more x2 and lnx2 terms. In general, as long as the limit x3 �
x2 � 1 remains valid, and the perturbative expansion of the free energy remains a good
approximation, the integral (18) can be generalized to be of the form

P (g) ∝
∫ x2 max

ν1

dx2x
p
2e

−aΓx2
2+bx2 , (19)

where a, b and p are parameters which in principle can be calculated within our framework
by keeping higher-order terms in the free energy. For p = 0 we get back (1) with renormalized
parameters. For finite integer p the integral can again be evaluated simply in terms of the
error function. For noninteger values of p, the integral is more complicated but it is clear that
the qualitative features of the results will remain the same. We expect that our results will
remain qualitatively valid near the crossover region on the insulating side (Γ � 1/2).

In order to check some of our approximate expressions, we have calculated P (g) numerically
for a quasi-1D wire. Recent techniques [4] allow us to obtain reasonable statistics for N = 5.
Unfortunately, it was not possible to obtain enough data for either Γ � 1 or 1 < g <
1.01. Nevertheless, (19) should be approximately valid in the region numerically accessible
to us and the data can be used to check if the approximate scaling expected from (19) holds
qualitatively. In fig. 2, circles and squares show the numerical results for different values of
average conductance ḡ. We use p = 2, Γe = aΓ and b as fitting parameters to fit the data
for different ḡ using (19) (for our range of parameters, the constant C of (1) turns out to be
negligible). Agreement with the data is good for g − 1 < 0.15. In fig. 3 the same data are
plotted as a function of the scaling variable s = exp[−√

Γe(ν − b/2Γe)] shifted by s(1 + α),
taking into account the fact that the singularities occur at g = 1 + α(Γe). Again the scaling
is quite good. We have checked that the scaling fails for larger values of Γe, which is expected
because it is close to the crossover regime (Γ ∼ 1/2), where our perturbative expansion of the
free energy starts to become invalid.

A nonanalyticity in P (g) was obtained in [4] within Random Matrix Theory (RMT), based
on the assumption that contributions from only the smallest two eigenvalues are important in
the insulating regime. All derivatives of P (g) in such a model diverge at g = 1. However, a
two-eigenvalue calculation within DMPK (obtained by neglecting the continuum in our model)
gives rise to an essential singularity at g = 1, so that there is no discontinuity in the derivatives
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Fig. 2 – Numerical data for N = 5 with different disorder compared with theoretical predictions
using (19). Data for ḡ ≈ 0.3 were fit (solid line) with Γe = aΓ = 0.292 and b = 2; ḡ ≈ 0.4 were fit
(dot-dashed line) with Γe = 0.346 and b = 1.8; ḡ ≈ 0.5 were fit (long-dashed line) with Γe = 0.391
and b = 1.6. In all plots, p = 2.

at that point. Therefore, it is not simple to see if the trivial discontinuity in the derivative
mentioned in the introduction persists beyond 1D. We emphasize that our present results for
quasi-1D are fundamentally different from both of the above models: whereas all derivatives
of P (g) diverge for the RMT model and vanish for the two-eigenvalue DMPK model, they are
finite for our quasi-1D system. Also, in contrast to the above cases, the singularity for the
quasi-1D system is not exactly at g = 1, but is shifted as a function of disorder. Finally, the
RMT results do not satisfy the approximate scaling of fig. 3.

We note that there is no phase transition in quasi-1D. It is therefore important to ask if a
nonanalyticity in P (g) in the absence of a true phase transition violates any fundamental prin-
ciple. Our framework can be considered as an electrostatic problem in one dimension involving
charges with repulsive interactions and confinement potentials. Our free energy and the den-
sity of charges are all analytic, ensuring that, e.g., the total energy will be an analytic function
of disorder. However, the conductance is a complicated function of the charge distribution, and
the nonanalyticity appears only in the distribution of the conductances where the charges have
to satisfy certain constraints. There is no restriction on the analyticity of such a distribution.
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Fig. 3 – Appropriately scaled data from fig. 2 showing approximate scaling as a function of s =
exp[−√

Γe(ν − b/2Γe)], shifted by s(1 +α). The theoretical lines from eq. (19) for different Γe (solid,
dot-dashed and long-dashed lines for Γe = 0.292, 0.346 and 0.391, respectively) do not fall exactly on
each other, showing the approximate nature of the scaling.
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In summary, we have shown that the distribution of conductances in quasi-1D systems in
the insulating regime has a nonanalytic behavior near g = 1. The nonanalyticity gives rise to
very sharp structures close to g = 1, with finite discontinuities in its derivatives. The presence
of similar structures in higher dimensions in numerically studied systems [6–8] gives rise to the
possibility that such nonanalyticity might be present in the conductance distribution in higher
dimensions as well, having important consequences for the Anderson transition. Whether the
nonanalyticity discussed here disappears abruptly at some critical value of Γ, or smoothly, as Γ
is increased beyond 1/2 remains to be clarified. It is conceivable that an abrupt disappearance
of the nonanalyticity is a signature of the Anderson transition.
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[4] Garćıa-Mart́ın A. and Sáenz J. J., Phys. Rev. Lett., 87 (2001) 116603.
[5] Plerou V. and Wang Z., Phys. Rev. B, 58 (1998) 1967; Jovanovic B. and Wang Z., Phys.

Rev. Lett., 81 (1998) 2767.
[6] Markos P., Phys. Rev. Lett., 83 (1999) 588; Phys. Rev. B, 65 (2002) 104207.
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