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PACS. 75.10.Hk – Classical spin models.
PACS. 64.70.Pf – Glass transitions.

Abstract. – We study the dynamics of a dilute spherical model with two-body interactions
and random exchanges. We analyze the Langevin equations and we introduce a functional
variational method to study generic dilute disordered models. A crossover temperature replaces
the dynamic transition of the fully connected limit. There are two asymptotic regimes, one
determined by the central band of the spectral density of the interactions and a slower one
determined by localized configurations on sites with high connectivity. We confront the behavior
of this model to the one of real glasses.

Kirkpatrick, Thirumalai and Wolynes showed that a family of fully connected (FC) disor-
dered spin systems realize schematically the phenomenology of the glass transition [1]. These
models are very useful for several reasons: i) their statics and dynamics are solvable with a vari-
ety of techniques; ii) since their macroscopic dynamic equations are identical to those stemming
from self-consistent approximations to more realistic interacting systems (e.g., mode-coupling
(MCA) [2]), they limit the range of validity of the latter; iii) their defects are clear (FC, infi-
nite dimensions) and some improvements needed in a better description of real systems can
be identified. The FC p spin disordered models are members of this group. Models of finite-
dimensional manifolds embedded in infinite dimensions under quenched random potentials are
generalizations that also yield real space information [3].

The main features of the FC spherical p spin model, on which we focus for concreteness,
are the following. i) It has a dynamic transition at Td < +∞. Above Td, an infinite system
(N → ∞) equilibrates with its environment [1]. Below Td, the equilibration time diverges with
N [4]. Right above Td, the dynamics coincides [1] with the schematic MCA to super-cooled
liquids [2] and correlations decay in two steps. Below Td, for any waiting time tw two-time
functions decay to zero after a sufficiently long subsequent time, with aging effects [4]. ii) It
has a rich structure of metastable (TAP) states that are stationary points of a free-energy
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density f function of the relevant order parameters (mi ≡ 〈si〉 in this case) [5, 6]. Within
(fmin, fth], the number of metastable states, N (f), is exponential in N leading to a finite
complexity Σ(f) ≡ N−1 lnN (f) (fmin < fth when p ≥ 3). Strictly below fth minima are
exponentially dominant with respect to saddles. Typically, the states on the threshold (TH)
are marginal [5] and attract the dynamics when times diverge after N → ∞ [4, 7]. iii) At
Td the liquid state (mi = 0 ∀i) is fractured into an exponential in N number of TAP states
with mi 	= 0. At Ts the partition sum is dominated by the lowest states with fmin = feq and,
since Σ(fmin) = 0, there is an entropy crisis associated to the Kauzmann paradox [1]. iv) The
barriers between TAP states are expected to be O(N), leading to a separation in the time
scales to descend below the threshold.

In finite-dimensional systems with finite-range interactions, however, the dynamic tran-
sition is only a crossover at Tg and it is not clear if the static transition exists at all. The
dynamics must penetrate below the threshold to slowly descend towards equilibrium. Within
this picture two distinct regimes would appear in the low-T isothermal dynamics of real sys-
tems: a FC-like one when the system approaches a pseudo-threshold of flat directions in phase
space and a slower activated regime in which the system jumps over barriers to relax its excess
energy density and very slowly progress towards equilibrium [3]. This view explains the cooling
rate effects since crossing Tg with a slower rate allows to penetrate deeper below the threshold.
How and if the aging properties in the first and second regime resemble is a very interesting
open problem. One could attack it analytically by studying the dynamics of p spin models
in time scales that diverge with N though this is very hard. Simulations of finite-size FC
models [8] and Lennard-Jones mixtures [9,10] support the existence of the two aging regimes.

In this letter we study an alternative model that realizes explicitly two nonequilibrium dy-
namic regimes, a FC-like one and a slower one that we relate to transitions between metastable
states with finite lifetime. The merits of the model are manifold. Its dynamics is tractable
analytically. Being defined on a random graph, the time-scale–dependent metastable states
are determined by the “real space geometry”: they are localized configurations on sites with
high connectivity. The model has also some drawbacks that we discuss after presenting its
solution. Still, we expect to use it as a starting point for the study of more realistic cases.

We solve the dynamics of the dilute spherical model:

HJ [�s] = −1
2

∑
i�=j

Jijsisj , (1)

where the spins are continuous unbounded variables, spherically constrained
∑N

i=1 s
2
i = N .

The couplings Jij are quenched random variables, independently and identically distributed
with

P (Jij) =
(
1 − p/N)

δ
(
Jij

)
+ p/Nπ

(
Jij

)
,

π
(
Jij

)
=

1
2
[
δ
(
Jij − 1/

√
p
)

+ δ
(
Jij + 1/

√
p
)]
, (2)

that satisfy Jii = 0 and Jij = Jji. When p is finite and N goes to infinity, this distribution
law generates a random graph, so that the connectivity of a given site is distributed according
to a Poisson law with average p. Contrary to the FC case, i.e. the complete graph obtained
in the p = N → ∞ limit, each spin interacts with a finite number of “neighbors”, as in a
finite-dimensional system. Yet, the “neighbors” are chosen randomly among the other spins
and there is no geometrical distance. The model is of mean-field type. In all the following we
take p� 1 but finite with respects to N . The spins evolve with the Langevin equation

ṡi(t) = −δHJ [�s]/δsi(t) − z(t)si(t) + ξi(t), (3)
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where the Lagrange multiplier z(t) enforces the spherical constraint and ξi(t) is a white noise
with zero mean and variance 〈ξi(t)ξj(tw)〉 = 2Tδijδ(t− tw). (kB = 1 and we rescaled time to
absorb the friction coefficient.)

We solve the model in two ways. By rotating the spin �s = (s1, . . . , sN ) onto the basis of
eigenvectors of the random matrix Jij , the Langevin equations of any continuous quadratic
model decouple and can be completely solved [11,12]. Many interesting dynamic observables
depend only on the density of states ρ(µ) of the interaction matrix Jij . We estimate their scal-
ing in different regimes analytically and we confront them to the numerical solution of the dy-
namical equations where we approximate ρ(µ) with eq. (29) in [13]. Then we introduce a more
general method that can also be applied to nonquadratic models and/or soft spins. It is a dy-
namic generalization of the iterative method used to find ρ(µ) for dilute random matrices [14].

For future reference, let us summarize the main properties of ρ(µ) [13, 15]. It has a
symmetric central band in [−λc(p), λc(p)], a crossover extending beyond |λc(p)| that is not
known in detail, and two tails that vanish as ρ(µ) ∼ exp[−pµ2 lnµ2] when µ→ ±∞. The tails
are due to large fluctuations of the local connectivity. For k � 2p, a site with k neighbors
gives rise to an eigenvalue µ ∼ √

k/p with a localized eigenvector �vµ on it. When p → ∞,
λc(p) → 2 and the tails disappear.

At time t after preparation in the initial condition sµ(0) the rotated spin sµ(t) = �vµ · �s(t)
is given by [12]

sµ(t)
√

Γ(t) = sµ(0)eµt +
∫ t

0

dt′eµ(t−t′)
√

Γ(t′)ξµ(t′).

Γ(t) ≡ exp[2
∫ t

0
dt′z(t′)] is related to the energy density, ε(t) = T/2 − dt ln Γ(t)/4, and it

determines the decay of the self-correlation NC(t, tw) =
∑N

i=1[〈si(t)si(tw)〉]J and linear self-
response NR(t, tw) =

∑N
i=1 δ[〈si(t)〉]J/δhi(tw)|h=0. We choose the initial condition sµ(0) =

±1 ∀µ that mimics an instantaneous quench from T = +∞ at t = 0. Imposing the spherical
constraint C(t, t) =

∫
dµρ(µ)〈s2µ(t)〉 = 1 implies

Γ(t) = f(t) + 2T
∫ t

0

dt′f(t− t′)Γ(t′), (4)

with f(t) ≡ ∫
dµρ(µ)e2µt. Asymptotically, f(t) can be estimated with a saddle point eval-

uation of the integral. When it is dominated by µ ∼ λc(p), as in the FC limit, f(t) ∼
exp[2λc(p)t]/t3/2. After a crossover time t0co(p) the integral is dominated by µ’s in the crossover
in ρ(µ) and f(t) grows faster than an exponential, though we cannot determine its functional
form. Finally, when times are so long as to explore the tails of ρ(µ), f(t) ∼ exp[t2/(2p ln t)].

We thus have a first crossover time t0co(p), where the behavior of f changes from exponential
(with polynomial corrections) to faster than exponential. The more interesting function Γ(t) is
determined from f(t) by eq. (4). Note that at T = 0, these two functions coincide. When T is
raised to a positive value, Γ(t) has still a crossover time tco(T, p) beyond which it grows faster
than exponential. The important feature which comes out of eq. (4) is that tco(T, p) remains
close to t0co(p), its zero-temperature value, until a crossover temperature T0(p) is reached. For
higher temperatures tco(T, p) grows with T . These time-temperature regimes are sketched in
the left panel of fig. 1. More quantitatively, this behavior amounts to

– when T < T0(p): Γ(t) ∼ f(t)/(1 − T/T0(p))2 for 1 � t < t0co(p) and Γ(t) ∼ f(t) for
t� t0co(p);

– when T > T0(p): Γ(t) ∼ exp[b(T )t] for 1 � t < tco(T, p) and Γ(t) ∼ f(t) for t� tco(T, p)
with tco(T, p) a growing function of T .
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Fig. 1 – Left: the crossover time as a function of temperature. Solid line p = p1, dashed line p = p2;
p1 < p2. Right: decay of the energy-density; p = 10. From bottom to top: T = 0, T = 0.5, T = 1.3
and T = 1.7.

T0(p) is the trace of the phase transition in the FC limit (T0(∞) = 1). It separates a low-T
regime in which the model has a FC-like out-of-equilibrium decay for long time scales and a
much slower one for still later epochs, from a high-T regime where the system crosses over
from an equilibrium-like behavior at long time scales to the tail-dominated very slow out-of-
equilibrium decay at much longer time scales. For all T , the system eventually reaches the
tail-dominated regime but the higher the temperature (> T0(p)) the longer the equilibrium-like
regime lasts.

The time scales just described can also be visualized from the decay of ε(t) displayed in
the right panel in fig. 1. For the two lower curves T < T0(p) ∼ 1.1 and t0co(p) ∼ 35. The
plateau occurs at [T − λc(p)]/2 as in the FC limit. For the two upper curves T > T0(p) and
tco(T, p) increases with T . For all T , when t� tco(T, p), we have ε(t) ∼ −t/(4p ln t) meaning
that the energy density diverges asymptotically, a result that is consistent with an unbounded
ρ(µ). The dynamics in the tail-dominated regime is independent of T , so not activated.

We explain in this paragraph how these results can be viewed as a sketchy picture of a
glass “transition”, see the left panel of fig. 1. Imagine that experimentally one has access
to times that are shorter than texp, choose a value of p such that t0co(p) < texp and define
T ∗ by texp = tco(T ∗, p). T ∗ thus depends on the experimental time scale available, and is
larger than T0(p). When T < T0(p) and times are shorter than t0co(p) the system ages as in
the FC limit, while beyond t0co(p) aging is of a different kind, dominated by the tails of the
distribution. When T > T ∗, all accessible times are shorter than tco(T, p) and the dynamics is
stationary as in the high-T phase of the FC limit. (Note, however, that these results are not
accessible with a naive static calculation since ε is not bounded from below.) Finally, there
is an intermediate temperature regime, T0(p) < T < T ∗, in which the dynamics crosses over
from stationary to tail dominated. The width of this “unnatural” regime can be shrinked by
using larger p’s since T0(p) very weakly decreases with p, while t0co(p) grows with p, cf. the
two curves in the left panel of fig. 1. One concludes that the dynamics behaves similarly to
what expected in real glasses in the sense that within the experimentally limited time window
there are two aging regimes when T < T0(p) and a single stationary regime at high T .

From now on, in order to shorten the notation, we call T0 the crossover temperature and tco
the crossover time at the considered T and p, i.e. tco = t0co(p) if T < T0(p) and tco = tco(T, p)
if T > T0(p). When p → ∞, tco moves to infinity for all T , ρ(µ) approaches the semi-circle
law and Γ(t) takes the FC form.

The evolution in the FC limit was easy to grasp by following 〈sµ(t)〉, where the low-T
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Fig. 2 – Left: the self-correlator in the tail-dominated regime for tw = 200 (solid) and 300 (dashed)
at T = 0.5; in the inset χ(C) for the same tw’s, compared to FDT (dotted). Right: zoom over the
initial decay of C.

nonequilibrium dynamics corresponds to an incomplete condensation on µ = 2 [12]. Let us
focus on T < T0 and analyze 〈sµ(t)〉 in the dilute case. When t is in the FC-like regime,
the projections on all eigenvectors with µ < λc(p) are exponentially suppressed, the one
with µ = λc(p) increases as a power law in time and the ones with µ > λc(p) increase
exponentially in time. When t enters the tail-dominated regime, the cut-off µc(t) which
separates the eigenvectors that are exponentially suppressed (µ < µc(t)) from those that
increase exponentially (µ > µc(t)) moves away from λc(p) and eventually grows as µc(t) ∼
t/(4p ln t). In real space this means that localized states on all sites with connectivities (k >
pµ2c) increase exponentially for times < t(µc), while all others are exponentially suppressed.
At longer times sites with higher connectivities dominate.

Richer information about the nonequilibrium evolution is contained in the self-correlation,
C, and linear self-response R [3,4]. An expression for C in terms of Γ that is also valid for the
dilute model is given by eq. (2.12) in [12]. We identify several scalings. When t and tw are
long but shorter than tco, the dynamics resembles the one for the FC model. For T > T0, the
decay is stationary. For T < T0 instead there is a first stationary decay towards an Edwards-
Anderson plateau qEA = 1 − T/T0 when τ ≡ t− tw � tw and a subsequent aging decay from
qEA towards zero with simple aging scaling, C(t, tw) ∼ C(tw/t), when tw ∝ t. Instead, when
tw falls in the tail-dominated regime Γ(t) ∼ f(t) and

C
(
t, tw

) −→ exp
[
− τ2

8p ln tw

][
1 − 2T

∫ τ
2

0

dy exp
[
− ytw
p ln tw

]
f(y)

]
, (5)

when tw → ∞ and τ � ln tw. At T = 0, we immediately identify the effective time
τeff ∼ √

ln tw and a very slow subaging decay [16]. One can recast the correlation in the
more familiar form

C
(
t, tw

)
= exp

[
− ln2 x

8

]
, x =

h(t)
h(tw)

, h(t) = exp
[

t√
p ln t

]
. (6)

If τ � √
ln tw/tw, we get C ∼ 1 − Tτ . The duration of the tw-independent part of the decay

decreases with tw and eventually disappears. Thus, the finite-T corrections vanish for long tw
and the scaling (6) holds for all T . These features are shown in fig. 2.

The linear self-response is given by R(t, tw) =
√

Γ(tw)/Γ(t)f(τ/2). When t < tco,
the FC scaling holds. When tw � tco and for τ ∝ √

ln tw when C varies, R(t, tw) =
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exp[−τtw/(2p ln tw)]. R decays much faster than C, it approaches zero on the scale τ ∼
ln tw/tw. An equivalent expression for this result is R(t, tw) ∼ exp[(− lnx)tw/

√
p ln tw] with

x given in eq. (6).
The modification of the fluctuation-dissipation theorem (FDT) is different in the two non-

equilibrium regimes. In the FC-like scale the results are identical to those in [12] and the
effective temperature [17] Teff ≡ ∂twC/R diverges as

√
tw. In the tail-dominated scale Teff

diverges much faster, as Teff [C] ∼ exp[a(C)tw/
√
p ln tw] with a(C) =

√
(−2 lnC). The inset

in fig. 2 shows the parametric plot of the integrated response χ against C [3] when tw is in
the latter regime.

We solved (3) in a rather simple way thanks to the quadratic nature of the model. Unfor-
tunately, this calculation cannot be adapted to treat cases with higher-order interactions as
are models with soft spins. With the purpose of developing a more generic approach to the
dynamics of dilute models, we introduce a method to derive macroscopic equations for C and
R from the dynamic generating functional Zd. We only sketch the method here, the details
shall be given in a forthcoming publication [18]. The idea is to get benefit from the formal
analogy between the static replica free energy and the dynamical action expressed with a
supersymmetric (SUSY) formalism. Using the SUSY formulation of stochastic processes [19]
the two-point functions are encoded in a correlator NQ(a, b) =

∑N
i=1[〈Φi(a)Φi(b)〉]J between

two superfields Φi(a). a and b include time and two Grassmann coordinates θ, θ. We define
the fraction of sites with super-field Φi identical to a chosen value Φ for all coordinates, in
analogy with the replica order parameter for dilute systems [20],

c[Φ] ≡ N−1
N∑

i=1

∏
a

δ
(
Φ(a) − Φi(a)

)
. (7)

After introducing it in Zd and averaging over disorder [18], we obtain the saddle point equation

csp(Φ) = λ exp
[
− 1

2

∫
daΦ(a)

(
−D(2)

a + z(a)
)
Φ(a) − δHeff

δc(Φ)

∣∣∣
csp

]
(8)

with λ a normalization constant, D(2)
a a differential operator,

∫
da the integration over time

and Grassmann coordinates, and

exp
[ −NHeff

]
=

[
exp

[
−

∫
daHJ [Φi(a)]

]]
J

.

This equation determines c[Φ] for any model for which the saddle point evaluation is exact.
(For models without spherical constraint, one removes the Lagrange multiplier z(a).) It plays
the role of eq. (20) in [13] for the replica order parameter csp(�φ) introduced to compute
ρ(µ). It cannot be solved without assumptions, yet an iterative resolution similar to that
of [13,14] taking into account more and more precisely the fluctuations in the local geometry
of the interactions can be implemented. For the present model one recovers the same results
obtained in this letter [18]. We expect that this approach will also be successful for non-
quadratic models for which an exact resolution is not possible.

In short, we showed that the dilute spherical spin-glass realizes explicitly part of the
scenario expected to hold beyond the “mean-field picture” of glassy dynamics. The main
ingredient of the model is the unbounded distribution of local connectivities, regardless of
the sign of the interactions. In the glassy context this model has, however, some flaws. Its
equilibrium energy density is not bounded and, strictly speaking, it only has a low-T phase.
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The dynamics in late epochs does not depend on T and when T is close to but above T0 the
stationary correlations do not decay in two steps. Nevertheless, the existence of a dynamic
crossover around T0 as opposed to a phase transition and the presence of two nonequilibrium
regimes are expected features for real glasses.

Dilute magnets are important in several other contexts. They are prototypical models
with Griffiths phases [21] and heterogeneous dynamics [22]. They are also related to sev-
eral optimization problems, and their dynamics to that of optimization algorithms [23]. We
shall report on studies of the dynamics of other dilute models, hopefully free of the defects
mentioned above, in the future.
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