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Abstract. – We present the results of efficiency and net power output for Feynman’s ratchet
and pawl engine and its electric counterpart, the diode engine, calculated by means of a re-
cently developed optimization criterion. In both cases a unified working regime between those
predicted by maximum efficiency and maximum power calculations was found. These results
extend previous findings for macroscopic heat engines and some molecular motors to mesoscopic
energy converters.

Recently, we have reported [1] a unified optimization criterion (hereafter referred to as
Ω-criterion) for energy converters in nonideal processes. If the process is characterized by
an appropriate independent variable y and a set of parameters, or controls, {γ}, we define
the Ω-criterion as a way to evaluate the best compromise between useful energy Eu(y; {γ})
and lost useful energy Eu,L(y; {γ}). Specifically, we take the Ω-function as the difference
between these energies, i.e., Ω(y; {γ}) ≡ Eu(y; {γ}) − Eu,L(y; {γ}). Results for irreversible
models of macroscopic thermal devices (heat engines, refrigerators and heat pumps) with
both linear [1, 2] and nonlinear [2] heat transfer laws, as well as for isothermal linear models
of biological motors [1], show that in all cases the Ω-based operation regime is intermediate
between those arising from maximum useful energy and from maximum efficiency. Moreover,
the application of this criterion is independent of environmental parameters (usually difficult
to estimate) and does not require the explicit evaluation of entropy generation (a subtle issue
in most cases). In particular, its implementation to heat engines only requires the knowledge
of power output P and efficiency η. In this case it reads (see eq. (2) in [1])

Ω(y; {γ}) = 2η(y; {γ})− ηmax({γ})
η(y; {γ}) P (y; {γ}), (1)

where ηmax({γ}) is the maximum value of the efficiency in the allowed range of values of
y for given γ’s. We stress that for endoreversible heat engines [3–5] (i.e. reversible models
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Fig. 1 – Sketch of Feynman’s engine: the paddle reservoir is at temperature TH and the ratchet
reservoir at temperature TC < TH, in order to obtain work output of thermal fluctuations. L is the
torque acting on the central wheel due to the external weight. From ref. [6].

where entropy generation only depends on the interaction of the working system with its sur-
roundings), the Ω-criterion is equivalent to the so-called ecological optimization criterion [4],
which represents the best compromise between maximum power output and minimum entropy
production [4, 5].

The main goal of this paper is to apply the Ω-criterion to an entirely different class of heat
engines: those producing power output by rectifying thermal fluctuations. In particular, we
will focus on (mechanical) Feynman’s ratchet and pawl engine [6] and its electric counterparts,
the diode engines [7, 8]. Because of their relation to molecular motors, these mesoscopic,
nonlinear systems have received much attention during the last few years [9–11]. However, only
a few papers have been devoted to study the energetics of these systems. As has been pointed
out recently [11], the concepts and strategies developed in Finite Time Thermodynamics
(FTT) [12] to analyze optimum operating regimes of thermal devices can also be useful for
ratchet systems. In this context, we recall that any regime in which the efficiency is greater
than the efficiency at maximum power and the power is greater than the power at maximum
efficiency is considered as an optimum operating regime in FTT [3].

We start with Feynman’s ratchet and pawl engine [6, 10]. The following expressions for
the dimensionless power output w and efficiency η were reported in [13]:

w(x; τ, α, λ) = e−α/τ [ex0−x − 1]x, (2)

η(x; τ, α, λ) =
[ex0−x − 1]x

[ex0−x − 1](α + x) + λ(1− τ)eα/τ
, (3)

where

x =
Lθ

kBTH
, α =

ε

kBTH
, τ =

TC

TH
, λ =

tσ

kB
, x0 =

(1− τ)α
τ

. (4)

In these equations (see fig. 1) ε is the energy needed to lift the pawl in a backward jump, θ is
the angle between two consecutive teeth, L is the torque acting on the central wheel due to the
external weight, TH is the temperature of the hot reservoir (the paddle reservoir), TC is the
temperature of the cold reservoir (the ratchet reservoir), and σ is the thermal conductance
characterizing the net energy flow from the hot reservoir to the cold one because of the
mechanical link between the paddles and the ratchet [10]. Since w ≥ 0, the dimensionless
variable x in (4) takes values in the range 0 ≤ x ≤ x0, so that L0 = kBTHx0/θ is the torque at
which the forward- and backward-jump rates are equal. Furthermore, the temperature ratio
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Fig. 2 – Dimensionless Ω(×5), dimensionless power output ω(×5) and efficiency η vs. (dimensionless)
x for Feynman’s ratchet with α = 0.3, τ = 0.1, and λ = 0.01.

τ takes values in the range 0 ≤ τ ≤ 1 and α ≥ 0, λ ≥ 0. For x = x0 and λ = 0, eq. (3)
becomes η = x

α+x ≤ x0
α+x0

= 1 − τ and eq. (2) gives w = 0, i.e., we obtain the Feynman
engine under reversible conditions: Carnot efficiency and zero power output. In this system
the role of the independent variable y in (1) is played by x and the controls {γ} are (τ, α, λ).
With this identification it is easy to evaluate Ω from eq. (1), while power and efficiency can
be evaluated from eqs. (2) and (3), respectively. In fig. 2 we plot ω, η and (the dimensionless)
Ω in terms of x for a given set of controls (α = 0.3, τ = 0.1, λ = 0.01). We remark that the
well-known parabolic-like behavior of the efficiency and power vs. an appropriate independent
variable observed in irreversible models of macroscopic heat engines [2, 3, 12] also applies in
this mesoscopic system. However, the main feature is that the efficiency under maximum Ω-
conditions, ηmax Ω, lies between the maximum efficiency, ηmax, and the efficiency at maximum
power, ηmax ω. This behavior has been obtained for all the realistic values of the controls
that we have checked. The behaviors with τ of the independent variable x giving maximum
efficiency, xmax η, maximum power, xmax ω, and maximum Ω, xmax Ω, are plotted in fig. 3a.
The behaviors with τ of the maximum power, ωmax, the power at maximum efficiency, ωmax η,
and the power at maximum Ω, ωmax Ω, are plotted in fig. 3b. The maximum efficiency, ηmax,
the efficiency at maximum power, ηmax ω, and the efficiency at maximum Ω, ηmax Ω, are plotted
against τ in fig. 3c. These figures clearly illustrate how the Ω-regime is intermediate between
those of maximum efficiency and maximum power, i.e., it can be considered as an optimum
working regime. In particular, we note that the power at maximum Ω conditions is very
close to the maximum power (see fig. 3b) and ηmax Ω is almost equal to the semisum of the
maximum efficiency and the efficiency at maximum power (fig. 3c). The same features have
been found for irreversible Carnot-like models of heat engines with linear and nonlinear heat
transfer laws [2].

Next we analyze the diode engine [7, 8]. A detailed study of its maximum power and
maximum efficiency regimes was reported in [14]. The basic expression is the stationary
solution of the Fokker-Planck equation for the probability distribution p(u) of the voltage u
of the capacitor [8, 14]

p(u) = A exp

[
−

∫
du

[(
1

R1(u) +
1

R2(u)

)
u + i

kT1
R1(u)C + kT2

R2(u)C

]]
, (5)

where Rj(u) and Tj (j = 1, 2) are the resistances and the temperatures of the nonlinear diodes
and i denotes the voltage-independent current (A is a normalization constant). From p(u) it
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Fig. 3 – Feynman’s ratchet. τ -behavior of: (a) the dimensionless x at maximum efficiency xmax η

(upper solid line), maximum Ω, xmax Ω (dashed line), and maximum power xmax ω (lower solid line);

(b) maximum power, ωmax (upper solid line), power at maximum Ω, ωmax Ω (dashed line) and power
at maximum efficiency, ωmax η (lower solid line); (c) maximum efficiency, ηmax (upper solid line),
efficiency at maximum Ω, ηmax Ω (dashed line), and efficiency at maximum power, ηmax ω (lower
solid line). In all cases α = 0.3 and λ = 0.01. The intermediate solid line in (c) is the semisum
[ηmax ω(τ) + ηmax(τ)]/2.

is straightforward to obtain the energetics of the system. In particular, the power output, P ,
is given by

P = i〈u〉 ≡ i

∫ +∞

−∞
up(u) du, (6)

while the heat flux absorbed (per unit time) by the engine from the thermal reservoir kept at
the hot temperature T1, Q̇T1 , is given by

Q̇T1 = −
∫

u

[
kT1

R1(u)C
∂p(u)
∂u

+
u

R1(u)
p(u)

]
du. (7)

The efficiency η is then obtained from η = P/Q̇T1 . When no current flows (stalling condition)
and the temperatures are equal, p(u) becomes an (equilibrium) Boltzmann distribution for
the capacitor’s energy, independent of Rj(u) (j = 1, 2). Under these conditions the power
output is zero and the net heat flux from the hot thermal reservoir vanishes. Here we assume
two diodes switched in opposite directions (see fig. 4) with the following expressions for the
voltage-dependent resistances: R1(u) = R+θ(u) +R−θ(−u) and R2(u) = R−θ(u) +R+θ(−u)
(θ(u) is the Heaviside step function). Inserting these expressions in eqs. (6) and (7), we obtain
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Fig. 4 – Sketch of the diode engine: two diodes D1 and D2 at different temperatures T1 and T2 and
a capacitor C working against an outer current generator. From ref. [8].

the power output, the heat flux from the hot thermal bath and then the efficiency. In ref. [14]
analytical expressions for these functions can be found in terms of a dimensionless current, i,
(the natural independent variable) and R

+
, R

−
, T 1 and τ = T 2/T 1 (the set of dimensionless

parameters or controls) with T j = kTj/C (j = 1, 2). Again, we calculate Ω from eq. (1) and
the efficiency and the power from eqs. (6) and (7). In fig. 5 we have plotted P , η and Ω vs. i for
T 1 = 10, τ = 0.1, R

−
= 100, R

+
= 1. The corresponding optimized behaviors of the current,

power output, and the efficiency are plotted against τ in figs. 6a, b and c, respectively. These
plots show that the above-mentioned key features of the mechanical ratchet are also displayed
for the electrical ratchet. The situation with a linear resistance R and a nonlinear diode
considered in ref. [7] is a particular case when R1(u) = R is constant for all values of u. In this
case we have also checked that the Ω-criterion predicts a similar intermediate working regime.

Finally, it is interesting to analyze the behavior of the efficiency when the parameters reach
some limit values. For the linear regime of Feynman’s ratchet (λ = 0, α 	 τ) it is not too
difficult to find that ηmax Ω = (1 + τ − 2τ2)/(1 + 3τ), which is located between the maximum
Carnot efficiency and the efficiency at maximum-power conditions given by (1−τ)/(1+τ) [13].
For the electrical ratchet when one of the resistances increases up to infinity (for example,
R

− → ∞ and R
+

= 1) we obtain that the efficiency under maximum-Ω conditions is given
by (1 + 2

√
τ − τ − 2τ3/2)/(1 + 3

√
τ) which, again, is below the maximum Carnot value
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Fig. 5 – Dimensionless Ω, dimensionless power output P , and efficiency η vs. (dimensionless) i for the

Sokolov diode engine with τ = 0.1, R
+

= 1, R
−

= 100.
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Fig. 6 – Diode engine. τ -behavior of: (a) dimensionless current at maximum power, imax P (up-

per solid line), maximum efficiency, imax η (lower solid line), and maximum Ω, imax Ω (dashed line);

(b) maximum power, Pmax (upper solid line), power at maximum Ω, Pmax Ω (dashed line) and power

at maximum efficiency, Pmax η (lower solid line); (c) maximum efficiency, ηmax (upper solid line),
efficiency at maximum Ω, Pmax Ω (dashed line), and efficiency at maximum power, ηmax P (lower

solid line). In all cases R
+

= 1, R
−

= 100. The intermediate solid line in (c) is the semisum
[ηmax P (τ) + ηmax(τ)]/2.

and above the efficiency under maximum-power conditions, given by the celebrated Curzon-
Ahlborn [3–5, 14] value 1 − √

τ . It is easy to check that the efficiency at maximum Ω is
approximately the semisum of the maximum efficiency and the efficiency at maximum power
in both cases. This semisum property also applies to endoreversible models optimized under
the ecological criterion [5].

In summary, it has been found that some mesoscopic nonlinear rectifying thermal fluc-
tuations heat engines, when optimized with the Ω-criterion, work in an intermediate regime
between those of the maximum power and maximum efficiency. These results together with
those already reported for macroscopic and some molecular motors endorse the Ω-criterion as
a unified, optimum working regime for heat engines, independent of their size and nature.
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Internacional (AECI).



N. Sánchez Salas et al.: Unified working regime of nonlinear systems etc. 293

REFERENCES

[1] Calvo Hernández A., Medina A., Roco J. M. M., White J. A. and Velasco S., Phys.
Rev. E, 63 (2001) 037102-1.

[2] Sánchez Salas N., Velasco S. and Calvo Hernández A., Energy Convers. Mgmt., 43
(2002) 2341.

[3] See, for example, Chen J., Yan Z., Lin G. and Andresen B., Energy Convers. Mgmt., 42
(2001) 173 and references therein.

[4] Angulo-Brown F., J. Appl. Phys., 69 (1991) 7465; Yan Z., J. Appl. Phys., 73 (1993) 3583.
[5] Arias-Hernández L. and Angulo-Brown F., J. Appl. Phys., 81 (1997) 2973; Yan Z., J.

Appl. Phys., 89 (2001) 1518; Angulo-Brown F. and Arias-Hernández L., J. Appl. Phys.,
89 (2001) 1520.

[6] Feynman R. P., Leighton R. B. and Sands M., in The Feynman Lectures on Physics, Vol. I
(Addison-Wesley, Reading) 1966, pp. 46.1-46.9.

[7] Sokolov I. M., Europhys. Lett., 44 (1998) 278.
[8] Sokolov I. M., Phys. Rev. E., 60 (1999) 4946.
[9] Julicher F., Ajdari A. and Prost J., Rev. Mod. Phys., 69 (1997) 1269; Astumian R. D.,

Science, 276 (1997) 917; Sekimoto K., J. Phys. Soc. Jpn., 66 (1997) 1234; Reimann P., Phys.
Rep., 361 (2002) 57.
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