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PACS. 73.40.Gk – Tunneling.
PACS. 66.35.+a – Quantum tunneling of defects.

Abstract. – The tunnelling through an opaque barrier with a strong oscillating component
is investigated. It is shown that in the non-weak perturbations regime (in contrast to the
weak one), higher perturbations rate do not necessarily improve the activation. In fact, in this
regime two rival factors play a role, and, as a consequence, this tunnelling system behaves like
a sensitive frequency-shifter device: for most incident particles’ energies activation occurs and
the particles are energetically elevated, while for specific energies activation is depressed and
the transmission is very low. This effect is unique to the strong perturbation regime, and it
is totally absent in the weak-perturbation case. Moreover, it cannot be deduced even in the
adiabatic regime. It is conjectured that this mechanism can be used as a frequency-dependent
transistor, in which the device’s transmission is governed by the external field frequency.

When a quantum particle propagates through an opaque barrier in the classically forbid-
den domain, it tunnels. This conduct is manifested by the exponentially small transmission
probability. Nevertheless, when some part of the barrier weakly oscillates, the particle will be
activated to higher energies, and the transmission will increase substantially [1–4]. However,
when the temporal change is not merely a perturbation but rather a strong variation, the
dynamics are too complicated to be described by such a simple rule of thumb, and most of
the interesting phenomena belong to this category.

While it is well known that even a very weak external oscillating field may considerably
increase the tunnelling current [3, 4], changes which are comparable to the initial system
parameters can cause elevator resonant activation and activation assisted tunnelling [5, 6],
charge quantization pumping [7], coherent destruction of tunnelling (CDT) [8, 9] as well as
wave function collapse [10]. That is, large changes reveal a wealth of physical phenomena.

When the tunnelling particle energy (Ω) is close to the potential barrier height (V ), the
dynamics becomes more complicated since the perturbation amplitude (∆V ) can exceed V −Ω,
i.e., the perturbation “strength” may be larger than the effective tunnelling barrier. This case
is extremely sensitive, since the dynamics is governed by two rival factors. On the one hand,
the oscillation’s amplitude is so large that for a finite segment of the oscillation period the
alternating potential blocks the particles’ transmission. Hence, following this reasoning, the
tunnelling rate should decrease. On the other hand, energy quanta generated by the oscillating
barrier can be absorbed by the tunnelling particle to assist it in the due course of tunnelling.
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Fig. 1 – An illustration of the system: The incident particles’ energy Ω (and the oscillating frequency
ω) determines whether the incident particles will be elevated to higher-energy states (dark circles,
most cases) or will remain in their initial state (open circles, specific cases).

In this work, we investigate the interplay between these two rival factors, and show that the
competition between them is responsible for the high sensitivity to the system’s parameters.
For example, it so happens that the incident particles are not always activated to higher
energy: when their initial energy is equal to one of a series of specific energies the activation
is frustrated, elevation to higher energies does not occur and the transmission is decreased
accordingly.

The problem of tunnelling in the presence of an external time-dependent potential has
been extensively studied [1–10]. However, in this paper the strong perturbation regime is
addressed and no approximate assumptions are made in the solution analysis. We give this
case both an exact numerical solution, and an analytical solution, using an approximation, to
show that the general conclusions can be deduced even in the slowly varying regime. However,
we also show that the oscillations frequency cannot be arbitrarily small, and in fact it should
be larger than the spectral bandwidth of the resonances, otherwise (and, in particular, the
adiabatic regime) the effect vanishes.

A few words should be added here about the plausibility of the effect’s practical implemen-
tation. The industry has a special interest in resonant tunnelling devices (RTD), which allow
miniaturizing electronic circuits and improving their performance. Ordinary RTD are very
sensitive to manufacturing processes, temperature, and impurities, and, as a consequence, a
reliable device is highly costly. The presented tunnelling device allows for the fabrication of a
low-cost device where any resonant refinement can be done by variations in the external field
frequency, and no special geometry or manufacturing restrictions are needed.

In this paper we discuss the tunnelling dynamics of a beam of particles which are activated
by strong harmonic perturbations. The tunnelling takes place through a very opaque potential
barrier (high and wide). In order to have the barrier opaque at all times, we follow [5] and
discuss the extreme case of an oscillating point potential −βδ(x) cos(ωt + η) (see fig. 1).

In terms of the Schrödinger equation, the dynamics can be expressed by

−ψ′′ − βδ(x) cos(ωt + η)ψ + V (x)ψ = iψ̇, (1)

where we adopt the units 2m = 1, h̄ = 1, and the notations ψ′′ ≡ ∂2ψ/∂x2, ψ̇ ≡ ∂ψ/∂t, and
V (x) is the potential barrier which vanishes quickly for |x| → ∞.
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The time-dependent solution can be written as a discrete Fourier transform:

ψ (x < 0) = ϕ+
Ωe−iΩt +

∑
n

rnϕ
−
Ω+nωe

−i(Ω+nω)t, (2)

ψ (x > 0) =
∑

n

tnϕ
+
Ω+nωe

−i(Ω+nω)t, (3)

where ϕ±
ω are the solutions of the stationary state Schrödinger equation, which does not

include the oscillating term, i.e.

−ϕ±′′
E + [V (x) − E]ϕ±

E = 0. (4)

The homogeneous solutions ϕ+
E describe waves that propagate from −∞ to +∞, while

ϕ−
E describes the waves that are incoming from +∞ and outgoing to −∞. Thus, ϕ+

E →
τEei

√
Ex−iEt (for x → ∞), while ϕ−

E → τEe−i
√

Ex−iEt (for x → −∞), and |τE |2 is the
probability of penetrating the barrier.

By taking care of the matching conditions of the solutions in eqs. (2) and (3) at x = 0, we
easily obtain

2snχn + β(sn−1 + sn+1) = 2χ0ϕ
+
0 δn0, (5)

when using the following notations:

χn ≡ ϕ+′
n

ϕ+
n

− ϕ−′
n

ϕ−
n

(6)

and
sn ≡ eiηnϕ+

n tn, (7)

where ϕ±
n ≡ ϕ±

Ω+nω (x = 0), ϕ±′
n ≡ ∂ϕ±

Ω+nω/∂x|x=0, δn0 is the Kronecker delta and tn ≡
tΩ+nω.

This difference equation can readily be solved. Notice that

χn = 1/gn(0), (8)

where gn(x) is the Green function of the equation −ψ′′ + V (x)ψ = (Ω + nω)ψ.
Thus, in the case of a perfectly symmetric rectangular barrier, χn comes directly from [11]

gn(0) = − coth
[
ρnL + i arctan(kn/ρn)

]
/2ρn, (9)

where kn ≡ √
Ω + nω, ρn ≡ √

V − k2
n, 2L is the barrier length and finally V is its potential

height.
In fig. 2 we present the exact numerical solution of eq. (5) in the case of a rectangular

barrier (in the figure the absolute value of sn is presented), which is the spectral solution of
eq. (1) at x = 0. This figure illustrates the solution’s sensitivity to the incoming particles’
energy: a 2% change in Ω causes a severe reduction in activation.

To formulate an analytical expression for this solution, we take advantage of the fact that
the perturbations are strong, i.e., we can assume that β2 � V − Ω � ω (notice that in fig. 2
β2 � V −Ω). Moreover, although in the numerical analysis we used the exact form of the Green
function (eq. (9)), in the case of an opaque barrier, the approximation gn(0) � −(2ρn)−1 may
be used with great accuracy.
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Fig. 2 – A plot of the transmission coefficient |sn| (defined in eq. (7)) as a function of the transmitted
particles frequency (the activated energy) Ω + nω. The solid line represents the case Ω/V = 0.625
and the dotted one represents the case Ω/V = 0.6125. The other parameters are ω/V = 0.0075,√

V L = 10.75 and βL = 9.35.

In this strong perturbation amplitude and low-frequency regime, the difference equation
(eq. (5)) can be transformed to a differential equation. By using the definitions

G(n) ≡ βsn/χ0ϕ
+
0 (10)

and c(n) ≡ 1 + χn/β, one easily obtains the differential equation

1
2

d2

dn2
G(n) + c(n)G(n) = δ(n), (11)

where δ(n) is the Dirac delta-function.
Hence, one can regard G(n) as having a Green function properties (including the singularity

at n = 0).
When the Green function G(n) is known, the transmitted solution of eq. (1) follows directly

from eqs. (3), (7) and (10):

ψ (x ≥ 0) =
χ0ϕ

+
0

β
e−iΩt

∫
dnG(n)

ϕ+
Ω+nω(x)

ϕ+
Ω+nω(0)

e−in(ωt+η). (12)

In particular, the scattered wave function at x = 0 is proportional to the Fourier transform
of the Green function.

Since V − Ω � ω, and β � ρ one can approximate

c � 1 + ωn/(βρ), (13)

where ρ ≡ √
V − Ω.

Then, we can define for convenience the variable

ξ ≡
(
n + ρ

β

ω

)(
ω

2βρ

)1/3

(14)

and the Green function is then

G(ξ) = −iπ

(
2βρ
ω

)1/3
{

Ai(−ξ)
[
Ai(−ξ0) + iBi(−ξ0)

]
, for ξ < ξ0,

Ai(−ξ0)
[
Ai(−ξ) + iBi(−ξ)

]
, for ξ > ξ0,

(15)
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Fig. 3 – Two characteristic plots (for arbitrary parameters) of the mean activation energy (Ωact) as a
function of the incident particles’ energy Ω (see eq. (18)). The two curves represent the same system
except for ω, which is five times smaller in the dotted curve.

where ξ0 ≡ ξ (n = 0) = (βρ/ω
√

2)2/3 and Ai and Bi are the Airy functions of the first and
second kind, respectively.

For frequencies which are lower than Ω (negative n’s) the amplitude oscillates like a simple
Airy function (see fig. 2 for a typical plot of |sn|, which is related to the Green function by
eq. (10)):

|G(ξ)|2 � π(2βρ/ω)2/3ξ
−1/2
0 Ai2(−ξ) for n < 0, (16)

since |Ai(−ξ0) + iBi(−ξ0)|2 � π−1ξ
−1/2
0 . That explains the insensitivity of the amplitude

of G (for a specific n < 0 or ξ < ξ0) to small variations in the incoming energy Ω (see, for
example, fig. 2). However, for a specific incoming energy Ω, the amplitude of G oscillates with
respect to the transmitted energies (i.e., Ω + nω). In this regime (i.e., ξ > ξ0)

|G(ξ)|2 � π(2βρ/ω)2/3ξ−1/2 Ai2(−ξ0) for n > 0, (17)

which means that for an incident particles’ energy Ω, the amplitude of the Green function has
a very mild dependence on the transmitted particles’ energies (i.e., on n), while it is strongly
dependent on the incident particles’ energies Ω. This can explain the result presented in
fig. 2, where a two percent change in the incoming particles’ energy was enough to frustrate
the activation to higher energies.

It is clear from eq. (17) and from the periodicity of the Airy function, that the probability
of an incident particle being activated to higher energy is very sensitive to its initial energy.
This sensitivity is manifested in the following calculation of the mean activation energy, Ωact =
Ω + ω〈n〉, i.e.,

Ωact = Ω + ω

∫
dnnPn

/∫
dnPn, (18)

where Pn ≡ |snϕ
+
n (x > L)/ϕ+

n (0)|2.
A plot of the mean activation energy (Ωact) as a function of the incident one (Ω) is shown

in fig. 3 (an exact numeric solution).
The opaqueness of the barrier is the cause for the sharp changes in Ωact. Since the tun-

nelling coefficient

ϕ+
Ω+nω (x > L)/ϕ+

Ω+nω(0) � exp
[ −√

V − Ω − nωL
]

(19)
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is exponentially small for non-activated particles, there is a great advantage for a particle to
be activated to higher energies Ω + nω � V . However, since G(n) is an oscillating function of
the incoming energy Ω, there are some energies Ωm for which G((V − Ωm)/ω) vanishes. In
these cases, according to eq. (17), not only is the transition to energy V forbidden, but the
transition to all the other higher energies (which correspond to n > 0) is, as well.

Therefore, the particles must tunnel out with energy which is very close to their initial one
(i.e., Ωact ≤ Ω − ω). This explains the source of these oscillations and the sharp transitions
between the activated energies � V and the non-activated ones � Ω. The transitions occur
when Ai2(−ξ0) � 0. Taking the low-frequency limit (ω → 0), the Airy function can be
expressed by simple trigonometric functions to obtain the transition criterion cos2[23

ρmβ
ω − π

4 ] �
0, where ρm ≡ √

V − Ωm. Therefore, the incoming energies for which Ωact � Ω, and thus no
activation occurs, are approximately

Ωm � V −
[

3
2

(
3
4

+ m

)
π
ω

β

]2

(20)

and since the ratio (19) is exponentially larger for higher n’s, the difference between the
incident energy and (20) must be exponentially small to prevent activation (otherwise, the
value of the Airy function will not be small enough to suppress the dominance of the high
energies in the average (18)), and therefore the spectral width of these regions is exponentially
small, Γ � exp[−ρmL/2] (see fig. 3).

In fig. 3 the non-activated energies Ωm, for which Ωact � Ω, are the minima of the plot
while the maxima correspond to full activation (i.e., Ωact � V ).

This effect occurs only when the perturbations are strong; otherwise (i.e., β2  V − Ω),
the solution of eq. (5) is reduced to sn ∼ ∏n

n′=1 β/2χn′ , which is always (for large n) an
exponentially small quantity. In fig. 3 one can see that when V −Ω increases (and β2 remains
fixed) the effect vanishes.

Moreover, when the oscillations rate decreases (i.e., ω decreases) the spectral difference
between two successive valleys shrinkage, i.e., ∆Ωm ≡ Ωm − Ωm−1 also decreases. It is
therefore clear that, when ω is small enough so that ∆Ωm < Γ, the effect vanishes and
elevation to higher energies is depressed. In fig. 3 this is shown as the dotted line.

Hence, this effect cannot be anticipated either in the adiabatic regime or in the weak-
perturbation approach. In both regimes the effect vanishes.

This effect can be qualitatively understood with the aid of the following argument. In order
to achieve maximum activation, the incident particle must remain in a quasi-localized state
inside the barrier for a relatively long period. However, it is known that CDT [8,9] can occur
for specific energies. In these cases barrier’s penetration is depressed and the particle cannot
accumulate energy quanta, and therefore cannot be activated. In our case these energies can
be qualitatively evaluated in the two-level approximation as the zeros of the Bessel function
J0(ε̂/ω) (see ref. [9]), where ε̂ can be approximated in our case by ε̂ ∝ βρ. In the limit of
small ω this result resembles eq. (20). However, the main point is that since activation is a
gradual process, i.e., from energy Ω to Ω + ω and all the way up to � V , then it suffices to
destruct tunnelling at the incident energy Ω in order to eliminate activation completely.

In general, the exact geometry and shape of the barrier and the impurity are of no essential
importance (see, e.g., generalization in ref. [6]). One can always (for any given geometry)
control the activation energy and the transmission by adapting the external field frequency.

To summarize, tunnelling transmission through an opaque barrier with an oscillating sec-
tion was investigated. It was shown that in the strong perturbation (and non-adiabatic)
regime a new selection rule appears. Not all the incident particles are activated, as could
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be anticipated in a tunnelling process. Although in most cases the incident particles are ele-
vated to higher-energy states, for some incident particles’ energy activation is depressed and
the particles remain approximately in their initial states. The spectral width of these energy
domains is exponentially small.

∗ ∗ ∗
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