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Abstract. – We prove the existence of new bound magnon excitations in Heisenberg ferromag-
nets due to finite-size effects. To describe these effects, we develop an analytical approximation
which is a modification of the widely used continuum approach. Thus, for the square lattice
we find 4 branches of bound two-magnon excitations in addition to the two ones known before.
It is shown that some of the new modes remain well separated from all the others even for a
macroscopic system.

Presently, there exists a growing interest in finite systems inspired by the variety of qualita-
tively new properties on meso- and nano-scale (see, e.g., [1]). Although theoretical knowledge
about such systems mostly comes from numerical simulations, it is necessary to develop ana-
lytical approaches which could provide a better understanding of the mechanisms involved. In
the present paper we consider “the simplest” problem, excitations in the isotropic Heisenberg
spin-(1/2) ferromagnet with nearest-neighbour interaction, to prove analytically the existence
of new modes due to magnon interaction and finite size, N . More specifically, we focus on
bound states as being representative of the essential features of the general many-body prob-
lem. On the other hand, bound excitations are relevant for different response functions of a
crystal at low temperatures (susceptibility, Raman scattering, ferromagnetic resonance etc.).
Recently, the interest in this model has increased as its two-dimensional (2D) version describes
the spin excitations of quantum Hall systems at filling factor ν = 1 [2]. We develop an approxi-
mation which allows to capture some important finite-size features and is a modification of the
continuum method widely used in condensed matter for the description of the thermodynamic
limit N → ∞. It builds upon the preliminary study [3] of a simple 1D system for which one
can rely on Bethe’s exact solution [4]. Although the known results obtained by the previous
continuum treatments are in agreement with available exact solutions (see [5–7] and [8, 9]),
some aspects important for finite-size systems have been overlooked. For instance, the single
eigenenergy branch of the bound two-magnon state in 1D coincides with Bethe’s famous so-
lution for the finite chain [4] in the thermodynamic limit. However, even for the 1D case the
wave function has not been obtained explicitly within the continuum approach and the point
c© EDP Sciences
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that there should be two orthogonal solutions according to Bethe did not receive any comment.
Even more puzzling is the situation for higher-dimensional lattices where no exact results are
available to compare with, although, according to the cited references, there should be, e.g.,
two and three bound modes for the square and the simple cubic lattices, respectively. These
questions might seem irrelevant since the finite-chain solution predicts only a small difference
(∼ 1/N2) in energy between the two excitations showing up at long wavelengths (∼ √

N).
One then expects that the finite-size corrections should become even less relevant for higher
dimensions. Surprisingly, quite the opposite turns out to be the case, as we prove below, and
the approach of the limit can become rather slow, e.g., logarithmic for the 2D case. It will
become clear that the properties of the wave function are essential for this behaviour. We
show that the construction of the proper continuum limit requires that the symmetry of the
wave functions is explicitly taken into account. This allows to describe the distribution of all
the two-magnon modes in the Brillouin zone. For instance, we recover the “lost” second mode
of Bethe’s exact solution for the chain and reveal 4 additional modes for the square lattice.

We first show how the main features of Bethe’s exact solution can be described within the
framework of a modified continuum approach. Since the total momentum of the excitation P
is a conserved quantity, it is convenient to consider the amplitude of the two-magnon excitation
a(n1, n2) in terms of the “center of mass” R and relative r coordinates of the flipped spins
(e.g., for the 2D case, Rx = (nx

2 + nx
1)/2, rx = (nx

2 − nx
1), etc.). We further adopt Bethe’s

convention of numbering the lattice sites so that the relative coordinates rx(= X) and ry(= Y )
are nonnegative integers 0, 1, . . . , N − 1. Thus,

a(n1, n2) =
exp[iP · R]

N
1/2
0

a(r)

and the Schrödinger equation leads to [8]

[ε− zJ ]a(r) + J
∑

d

cos
(

P · d
2

)
a(r + d) = J(r)

[
a(0) cos

(
P · r

2

)
− a(r)

]
, (1)

where the sum runs over the z nearest neighbors, ε is the excitation energy and J(r) = J for
nearest neighbours and zero otherwise. Some symmetry requirements follow from permutation
of overturned spins (a(r) = a(−r)) and from cyclic boundary conditions (a(nx

1 , n
y
1 ;n

x
2 , n

y
2) =

a(nx
1 , n

y
1;n

x
2 +N,ny

2) = a(nx
1 +N,ny

1 ;n
x
2 , n

y
2), etc.). Taking the square lattice as an example,

N0 = N ×N , we get

a
(
rx, ry

)
= exp

[
iPxN

2

]
a
(
rx ±N, ry

)
= exp

[
iPyN

2

]
a
(
rx, ry ±N

)
. (2)

As the components of the total momentum take on the values 2πlx/N and 2πly/N with lx and
ly being integer quantum numbers, existence of eigenstates with even (s) and odd (a) parity
immediately follows from (2) depending on the parity of l. We then expand the amplitude of
the relative motion into the Fourier series:

a(r) =
1
N0

∑
Q

b(Q) exp[ir · Q]. (3)

Due to the constraints on the variable Q in (3) imposed by (2), we get the relations 1 =
exp[iN(Px,y

2 ±Qx,y)] which determine the range of values for the respective components of Q:

Qs
x,y =

2πm
N

, Qa
x,y =

2πm
N

+
π

N
; m = 0, 1, . . . , N − 1. (4)



840 EUROPHYSICS LETTERS

Thus, for the antisymmetric excitation the sequence of values of Qa
x,y in (3) is shifted as

compared to the symmetric Qs
x,y. Then the Fourier amplitude b(Q) and the eigenenergy are

obtained from (1). As we intend to construct a continuum approximation which would keep
track of the symmetry properties of the underlying finite lattice, we have to incorporate the
above distinction between the two types of states in our approximation. Therefore we replace
the sums by integrals over the shifted interval of momenta [3], i.e.

1
N

∑
Qa

−→ 1
π

∫ π+π/N

π/N

dQ.

In this way also the volume of the phase space is preserved. Then we indeed obtain two
different branches in the continuum limit for the 1D problem as predicted by Bethe. The single
branch mentioned above (see, e.g., [6,8]) corresponds to the symmetric solution εs = J sin2(p

2 ),
while the antisymmetric branch is described by the equation

1− 2
π

sin
(

π
N

)
cosh v

=
2
(
cosh v − cos(p/2)

)
π sinh v

arctan

(
sinh v
sin

(
π
N

)
)
, (5)

where v = arccosh((1 − εa/2J)/ cos(p
2 )) and p is a continuous variable meant to interpolate

between the discrete momenta. As was shown earlier, our approximation reproduces well the
exact results [3]. For instance, at the border of the Brillouin zone εa = εs = J . Towards the
long-wavelength region the energy of the antisymmetric excitation grows higher than that of
the symmetric one, their separation being scaled as p4 for small momenta. Both solutions lie
below the continuum of scattered magnon states until the latter is crossed by εa(p) at some
critical momentum pc 	 2π√

N
which should be compared to the value found by Bethe PB

c 	 4√
N

.
From eq. (5) one can see that it predicts a continuous real-valued eigenenergy solution beyond
the crossing point, in the region of the continuum of scattered states εa > 2J(1− cos(p

2 )), till
exactly the last allowed value of momentum is reached at p = 2π/N . This might seem to be in
contradiction with Bethe’s treatment which predicts that the bound state exists only below the
continuum of scattered states. However, upon a closer look, one should recognize in v the imag-
inary part of the Bethe ansatz wave function. Then it is clear that at the crossing point v = 0
and a continuous solution is allowed if v becomes imaginary above the crossing point. This
corresponds to an oscillating, delocalized amplitude of a scattered two-magnon state. With
this in mind, one can easily verify that Bethe’s equations share the same behaviour. Thus, the
distinction between bound and scattered states on a discrete lattice consists not in their energy
but in the behaviour of the wave function. The physical reason for the decay is the vanishing
of magnon-magnon attraction precisely at the borderline of the continuum where the crossover
from localized (bound) to delocalized (scattered) states takes place. We can also see that by
increasing the number of spins the energies of the two eigenmodes merge so fast that one
could hardly distinguish them already at modest values of N . For the Bethe ansatz equations
the exact 1/N -expansion was considered before and in the long-wave region of the spectrum
the so-called non-string solutions were obtained [10, 11]. In contrast to the string solutions
which describe odd and even excitations, only the even ones are allowed to exist for momenta
P � 1/

√
N . Our approximation agrees well with this picture (see a more detailed analysis

in [3]), but, as an approximation, it, of course, slightly deviates from the exact expansion. It
can also be seen that, if the solution for the Fourier amplitude is substituted into the continuum
version of (3), one does not reproduce the exact result for the N → ∞ limit (for a recent review
of Bethe’s ansatz see [12]). The proper analytical continuation from a discrete lattice to con-
tinuum (X → x) can be achieved by explicitly introducing the symmetry requirements into the
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amplitude: As,a(x) = 1
2 (aa,s(x)± aa,s(N − x)). Normalization constants are then readily ob-

tained and we get the correct result which agrees with the Bethe ansatz at N → ∞: As,a(x) =
sin( p

2 )√
2

[cosx−1(p
2 )± cosN−x−1(p

2 )]. In the discrete case the allowed values of the total momen-
tum required to excite one or another bound state are distributed in an alternate order over the
Brillouin zone. The most probable location of the two overturned spins for both modes is at the
nearest-neighbour sites, x = 1 and x = N − 1. We can see from the above expression that the
reason for the instability of the antisymmetric state resides in the vanishing of its amplitude
at large separation of the overturned spins (∼ N/2), i.e. this state is more loosely bound.

We turn now to a more challenging 2D case where our formalism opens new perspectives
to study the excitations. Apparently, one should not expect the finite-size effects to be larger
than for the 1D chain and therefore assume an even faster convergence to the two energy
branches found by Wortis [6]. However, it turns out that not all the new modes we find for
the square lattice follow this tendency. On the contrary, some of them stay well separated
in energy from all the others and could be easily observed even at macroscopic values of N .
Existence of different types of excitations follows from the symmetry relations (2) depending
on the parity of the quantum numbers lx and ly and also from the symmetry group C4v of the
lattice. The excitation modes should transform according to the irreducible representations
of the group and their classification is obtained by using the projection operator Ôα (see,
e.g., [13]). For a fixed momentum P the action of Ôα on the Fourier expansion (3) projects
out a function which transforms according to one of the five irreducible representations α of
the group: four one-dimensional representations A1, A2, B1 and B2 and one two-dimensional
E. Our convention of numbering the lattice sites should be taken into account when describing
the group transformations. For instance, the C4 rotation gives C4(X,Y ) → (N−Y,X). There
are three different combinations of the quantum numbers: 1) both lx and ly are even, 2) both
lx and ly are odd, 3) the numbers are of different parity. These combinations determine the
respective sequences for Q in (3). The projection operator then generates the modes allowed
for a particular combination. Thus, we find that only 2 modes “survive” the projection for the
first combination of quantum numbers: A1 and B1. The second combination allows A2 and B2

and the third one corresponds to the E mode. It has to be noted that due to their association
to odd quantum numbers the “strange” A2 and B2 modes are different by symmetry from
the standard ones (e.g., B2 transforming as XY ) which would arise for both lx and ly even,
unless being forbidden by the symmetry of the lattice. Thus we get

aA1,B1(X,Y ) =
1

2N2

∑
Qs

x,Qs
y

bA1,B1(Qx, Qy)×
(
cos(QxX) cos(QyY )±Qy ←→ Qx

)
,

aA2,B2(X,Y ) =
1

2N2

∑
Qa

x,Qa
y

bA2,B2(Qx, Qy)×
(
cos(QxX) cos(QyY )∓Qy ←→ Qx

)
,

aE(X,Y ) =
1
N2

∑
Qa

x,Qs
y or Qs

x,Qa
y

bE(Qx, Qy)×
(
cosQxY cosQyX

cosQxX cosQyY

)
. (6)

When these expressions are substituted into eq. (1), one obtains a 2× 2 matrix generalization
of the eigenproblem. According to our continuum treatment of the 1D case, we replace the
double sums by double integrals which keep track of the finite size via respective boundaries
of integration. The amplitudes are obtained after the proper continuation from the discrete
lattice as described above. We then find that the A1 and B1 modes should be identified with
the two eigenenergy solutions found before [6,7]. The A1 mode is stable for the whole Brillouin
zone and has the lowest energy as compared to the other modes. The B1 mode, the highest in
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Fig. 1 Fig. 2

Fig. 1 – Dispersion of the B2 mode along the diagonal direction px = py for the two values of the
number of spins N0 as determined from our approximation. The dispersion of the B1 mode was
obtained by Wortis in [6].

Fig. 2 – Critical lines defining the regions of stability (area outside the respective line) for the B2 mode.
The line “a” corresponds to our coarse approximation, “b” to the improved one (incorporating the
exact 1D solution) and “c” to the numerical calculations for N0 = 104. The line “W” is independent
of N and stands for the B1 mode.

energy, has a very narrow and anisotropic region of stability mostly concentrated around the
corners of the zone. For instance, along the diagonal direction (px = py = p) we get the same
analytical value as in [6] for the critical momentum pB1

c = 2arccos( 4
π −1), marking the crossing

point with the lower boundary of the continuum of scattered states, EL = 2J(2− cos(px/2)−
cos(py/2)). The four new modes are obtained from the N -expansion of the corresponding
integrals containing the cutoffs. After straightforward calculations we find that the energies
of the A2-mode and one of the components of the E-mode lie close within the J/(N lnN)
range correction to the energy of the B1 mode and thus their N -dependence is negligible
(the px = py direction is chosen). The most dramatic is the behaviour of the B2 mode (and
similarly, of the other component of the E mode) whose dispersion evolves from being close to
that of the B1 towards the A1 mode by increasing the number of spins as illustrated in fig. 1.

Due to the logarithmic N -dependence of its energy, the B2 mode is well separated from
the reference A1 and B1 branches. This separation becomes most prominent for a mesoscopic
system when the branch is “half-way” between the two modes above. At a local scale the
shape of aB2(X,Y ) approaches that of the A1 mode by increasing the number of spins. We
have also carried out numerical calculations of the solutions of eq. (1) for not very large values
of N which confirm these unexpected findings.

An important improvement of our approximate description of a mesoscopic ferromagnet
can be achieved if an exact solution for 1D is incorporated in the formalism. The functional
form of the Bethe ansatz does not lend itself easily to this purpose —an observation which may
explain why Bethe’s original hope to reach out for higher dimensions did not materialize [4].
The alternative we propose is based on new formulas for finite lattice summation (details of
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derivation will be given elsewhere). In particular, we find a new form for the exact solution
of Bethe’s bound-state problem without making an ansatz:

aa(X) =
Ca

N

N−1∑
k=0

cos
((

2π
N k + π

N

)
X

)
cosh(v)− cos

(
2π
N k + π

N

) = Ca

tanh
(

Nv
2

)
cosh(Xv)− sinh(Xv)

sinh(v)
,

as(X) =
Cs

N

N−1∑
k=0

cos
((

2π
N k

)
X

)
cosh(v)− cos

(
2π
N k

) = Cs

coth
(

Nv
2

)
cosh(Xv)− sinh(Xv)

sinh(v)
, (7)

where cosh(v) = (1− ε/2J)/ cos(P
2 ), X ∈ [0, N − 1] and Ca,s are the normalization constants

which can easily be obtained by using the general formulas above. Then v can be identified
with the imaginary part of the Bethe ansatz phase θ as noted above and one easily obtains
Bethe’s eigenenergy equation if the wave function (7) is substituted into (1). However (7)
represents a more general exact relation where v is an arbitrary complex variable, implying
that it can also be used to describe the scattered magnon continuum. More importantly, (7)
can now be directly introduced in our continuum approach by reducing the number of integrals.
The N -expansion we obtain in this way turns out to be both closer to numerical calculations
and easier to obtain analytically. For instance, one can compare the expression defining the
critical point (pc

x = pc
y = pc

B2
)

2
(
1− cos

(
pc

B2

2

))
	 1

1
π lnN − 0.22

of the initial approximation with the improved one

2
(
1− cos

(
pc

B2

2

))
	 1

1
π lnN − 0.04

.

The numerical calculation for N = 100 gives pc
B2

= 1.54, while from the above expressions we
get 1.86 and 1.73, respectively. Figure 2 shows the critical lines for the B2 mode calculated
by using both the coarse and the improved approximation as well as the result of numerical
calculation for N = 100. Another result of calculations is that the critical lines above are
converging with increasing N . This implies that our approximation captures correctly the
main term of the N -expansion for the exact solution.

We conclude that although the problem of bound magnon excitations in the ferromagnetic
Heisenberg model was considered completely solved long time ago, our approach has allowed
to find several new modes and describe the distribution of bound states over the Brillouin
zone. Contrary to expectation some of the new modes remain well separated from the others
even at macroscopic values of N . These “mesoscopic” modes increase their stability with
increasing the number of spins. Obviously, similar features can be found in multimagnon
spectra too. The continuum approach presented above provides new reliable approximations
for finite systems and can be extended to other models too.
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