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PACS. 98.65.-r – Galaxy groups, clusters, and superclusters; large scale structure of the Uni-
verse.

PACS. 98.62.Ve – Statistical and correlative studies of properties (luminosity and mass func-
tions; mass-to-light ratio; Tully-Fisher relation, etc.).

PACS. 89.75.Da – Systems obeying scaling laws.

Abstract. – In this letter I present results from a correlation analysis of three galaxy redshift
catalogs: the SSRS2, the CfA2 and the PSCz. I will focus on the observation that the amplitude
of the two-point correlation function rises if the depth of the sample is increased. There are
two competing explanations for this observation: one in terms of a fractal scaling, the other
based on luminosity segregation. I will show that there is strong evidence that the observed
growth is due to a luminosity-dependent clustering of the galaxies.

Introduction. – One of the problems in cosmology is to understand the formation of the
large-scale structures in the Universe, as traced by the spatial distribution of galaxies. The-
oretical models of large-scale structure and galaxy formation, whether involving analytical
predictions or numerical simulations, are based on some form of random or stochastic initial
conditions. This means that a statistical interpretation of the observed galaxy distribution
is required, and that statistical tools must be deployed in order to discriminate between dif-
ferent cosmological models (e.g., [1]). The most frequently employed statistical measure is
the two-point correlation function. Higher-order correlations are important, but already the
observed two-point correlation properties of the galaxy distribution impose strong constraints
on the models of structure formation. However, two basically different interpretations of the
observed two-point properties are discussed: in the “standard” picture, the galaxy distribu-
tion is assumed to be homogeneous on large scales. The correlations of the deviations from
this homogeneous distribution are quantified by the two-point correlation function ξ(r) (see,
e.g., [2]). In the alternative picture, the galaxy distribution is modelled as a fractal. The
two-point correlations are then measured with the conditional density Γ(r) (see, e.g., [3]).
The inhomogeneous nature of a fractal challenges the standard picture. Clearly, these two
models lead to different interpretations of observational results. In this letter I will focus on
the growing of the amplitude of the two-point correlation function ξ(r) with the sample depth.
This growing amplitude is either explained with the scaling properties of a fractal or with lu-
minosity segregation, a luminosity-dependent clustering strength. By reanalysing three galaxy
catalogues I will show that there are strong arguments in favour of luminosity segregation.
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Two-point correlations. – Let me first discuss the stochastic picture where the galaxies
positions in space are treated as a realization of a random process. The product density
ρ2(x1,x2)dV (x1)dV (x2) is the probability of finding two galaxies in the volume elements
dV (x1) and dV (x2), respectively. In a homogeneous and isotropic point distribution with
mean number density ρ, one defines the two-point correlation function ξ(r) (e.g., [2]),

ρ2(x1,x2) = ρ2(ξ(r) + 1), (1)

with r = |x1 −x2|. The conditional density can be defined as Γ(r) ≡ ρ(ξ(r) + 1). For a point
distribution on a fractal the mean number density ρ and also ξ(r) are not well defined. Thus,
in this case, one investigates the two-point correlations with the conditional density Γ(r):
the density of galaxies at a distance of r as seen from another galaxy [4]. A scale-invariant
cumulant ξ(r) is typically found in critical systems, whereas a scale-invariant conditional
density Γ(r) is an indication for a fractal system. Clearly, only in the limit r → 0, both ξ(r)
and Γ(r) may show the same scaling behaviour. An instructive discussion of the different
scaling regimes in the galaxy distribution is presented in [5].

Galaxy samples. – In a typical galaxy catalogue the position on the sky inside a given
angular region Ω and the flux in a given waveband are measured. The distance to our posi-
tion is estimated from the redshift of the galaxy. A flux-limited sample consists of galaxies
down to a limiting flux flim. To study the clustering properties of such a galaxy catalogue, I
extract a sequence of volume-limited samples. A volume-limited subsample is constructed by
introducing a limiting depth R and a limiting luminosity Llim and by admitting only galaxies
within a distance s ≤ R from our position and a luminosity L ≥ Llim (Llim ∝ R2flim, in the
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Fig. 1 – Luminosity L of the galaxies in the Southern Sky Redshift Survey 2 (SSRS2) plotted against
their distance s to our galaxy. Volume-limited samples comprise the galaxies in the upper left part
enclosed by the solid lines (120h−1Mpc), dotted lines (100h−1Mpc), short-dashed lines (90h−1Mpc),
long-dashed lines (80h−1Mpc), and dash-dotted lines (70h−1Mpc). Low-luminosity galaxies at large
distances are not observed, as can be seen from the empty region in the lower right part.

Fig. 2 – Sample geometry of a volume-limited sample with sample depth R (simplified sketch). Only
galaxies inside the opening angle Ω and with a distance s < R enter the sample.
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Fig. 3 – ξ(r) and Γ(r) for volume-limited samples from the SSRS2 with depth 120h−1Mpc (solid
line), 100h−1Mpc (dotted line), 90h−1Mpc (short-dashed line), 80h−1Mpc (long-dashed line), and
70h−1Mpc (dash-dotted line). The limiting luminosity changes in these samples. The labels “LS”
and “minus” mark the results obtained with the Landy and Szalay and the minus estimator, respec-
tively. The solid dot marks r0(120h

−1Mpc), the open dots mark r0(100h
−1Mpc), r0(90h

−1Mpc),
r0(80h

−1Mpc), and r0(70h
−1Mpc) from right to left, according to eq. (2). The smooth solid line is

ξ(r) for a fractal with D = 2 and r0(70h
−1Mpc) according to eq. (2). Two-σ error bars, determined

from a Poisson process, are shown only for the 120h−1Mpc and 70h−1Mpc samples.

Euclidean case, see fig. 1). For a given sample one defines the sample-dependent number den-
sity ρS = N/V , with the number of galaxies N , and the volume V . The two-point correlation
function ξS, and the conditional density ΓS determined from this sample satisfy the relation
ΓS(r) = ρS(1 + ξS(r)). If our galaxy sample stems from a homogeneous distribution, neither
ξS nor ΓS should change if one increases the sample size (despite statistical fluctuations). If
our sample stems from a point distribution on a fractal, the number density ρS depends on the
sample size, but the scaling exponent D−3 of ΓS(r) ∝ rD−3 stays invariant (D is the correla-
tion dimension). As a result, ξS is changing with the size of the sample (see, e.g., [3]). For the
two-point correlation function often the following parameterisation is used ξS(r) = ( r0

r )γ with
the scaling index γ. The so-called “correlation length” r0 quantifies the amplitude rγ

0 of a scale-
invariant correlation function. Consider a large sample with a depth Rmax and several smaller
samples R ≤ Rmax within (see fig. 2). On a fractal r0 is proportional to R [6], specifically

r0(R) =
R

Rmax
r0(Rmax), and ξ(r) = 2

(
r

r0(R)

)D−3

− 1. (2)

In the following I will estimate the two-point correlation function as well as the conditional
density for three galaxy samples. I checked that for the samples and the scales considered
here, the estimators discussed by [7] give consistent results. I illustrate this by showing the
results for ξ(r) both for the minus (reduced sample) estimator as favoured by [3], and for
the estimator due to Landy and Szalay [8]. Reference [7] showed that the Landy and Szalay
estimator has preferable variance properties.

Luminosity segregation but no fractal scaling in the SSRS2. – The Southern Sky Redshift
Survey 2 (SSRS2 [9]) is 99% complete with a limiting magnitude of mlim = 15.5 (magnitudes
are logarithmic flux measures). The angular extent is −40◦ ≤ δ ≤ −2.5◦ with b ≤ −40◦

and δ ≤ 0◦ with b ≥ 35◦ (declination δ, galactic latitude b). The magnitudes were K-
corrected as described in [10], and luminosity distances were used. Nearly identical results
could be obtained using Euclidean distances and no K-correction. In fig. 3 both ξ(r) and Γ(r)
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Fig. 4 – ξ(r) and Γ(r) for subsamples from the volume-limited samples from the SSRS2 with a depth
of Rmax = 120h

−1Mpc. The depth of the sub-samples is 120h−1Mpc (solid line), 100h−1Mpc (dotted
line), 90h−1Mpc (short-dashed line), 80h−1Mpc (long-dashed line), and 70h−1Mpc (dash-dotted line).
All samples have the same limiting luminosity. The smooth solid line is ξ(r) for a fractal with D = 2
and r0(70h

−1Mpc) according to eq. (2). Marks as in fig. 3.

are shown for a sequence of volume-limited samples from the SSRS2. The number density
in the volume-limited samples decreases from 70h−1Mpc to 120h−1Mpc. Consequently, the
conditional density Γ(r) is decreasing with the sample depth. The amplitude of ξ(r) increases
with the depth of the samples, and r0 roughly follows relation (2). This was interpreted as
a sign of a fractal galaxy distribution (e.g., [3]). However, another explanation is possible.
Due to the construction of the volume-limited sample the mean absolute luminosity of the
galaxies in the sample increases with the depth of the sample (compare with fig. 1). Hence,
the growing amplitude of the correlation function for deeper volume-limited samples may be
a result of the stronger clustering of the more luminous galaxies. This is called luminosity
segregation. Clearly, the two-point correlation function ξ(r) applied to a sequence of volume-
limited samples is not able to distinguish between both claims. To test the scaling relation (2)
independently of any luminosity dependence, I use a volume-limited sample with a depth
Rmax = 120h−1Mpc. From this volume-limited sample I extract a sequence of subsamples with
depths R ≤ Rmax (see fig. 2). All these subsamples have the same lower limit in luminosity
(see fig. 1). As can be seen from fig. 4, the estimated ξ(r) are consistent in these samples
but inconsistent with the fractal prediction. There is no indication for a fractal scaling of
the “correlation length” r0(R) as given in eq. (2). Moreover, the conditional densities Γ(r) of
these samples nearly overlap. Measurement errors, e.g. for the position of the galaxies, have no
visible effect on the correlation functions. The dominant contribution is the statistical error.
However, there is only one realisation of the galaxy distribution in the Universe. Therefore,
I have to assume a model to quantify the statistical errors. The simplest model is a purely
random distribution of points, the Poisson process. I estimate the errors from 100 realisations
of a Poisson process with the sample geometry, and the number density as in the galaxy
samples. Later on, I will show that a more realistic modelling leads to larger errors. These
errors are within the same order as determined from a Poisson process. For both models, the
errors are smaller than the predicted effects from fractal scaling.

Luminosity segregation but no fractal scaling in the CfA2. – As a spatially complemen-
tary sample to the SSRS2 I use a galaxy sample from the CfA galaxy catalogue (see [11] and
references therein), with δ ≥ 0, and |b| ≥ 35 and a limiting magnitude of mlim = 15.5. From
this galaxy catalogue I extract similar volume-limited samples as for the SSRS2. The results
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Fig. 5 Fig. 6

Fig. 5 – ξ(r) for a sequence of volume-limited samples with changing limiting luminosity Llim from
the CfA2 determined with the Landy and Szalay estimator. The smooth solid line is ξ(r) for a fractal
with D = 2 and r0(70h

−1Mpc) according to eq. (2). Marks as in fig. 3.

Fig. 6 – ξ(r) for samples with varying depth but with the same limiting luminosity extracted from a
volume-limited sample of the CfA2 with a depth of Rmax = 120h

−1Mpc. Marks as in fig. 4.

shown in figs. 5, 6 lead to the same interpretation as for the SSRS2: the growing amplitude
of ξ(r) is caused by luminosity segregation.

Neither luminosity segregation nor fractal scaling in the PSCz. – Both the galaxies in
the SSRS2 and the CfA2 were selected in the optical waveband. The galaxies in the PSCz
survey were selected according to their flux in the infrared as detected by the IRAS satellite. A
detailed description of the IRAS PSCz galaxy catalogue may be found in [12]. I extract volume-
limited samples from the PSCz survey using luminosity distances within the standard masked
area. I approximate the sample geometry by two spherical caps with galactic latitude b ≥ 5◦ for
the northern part and with b ≤ −5◦ for the southern part. Hence, I neglect some regions which
were left empty due to galactic absorption or confusion in the IRAS PSC maps. I filled these
empty regions with random points assuming the same number density as in the fully sampled
region. No differences in the correlation properties between the filled and unfilled samples are
visible in the two-point measures. The ξ(r) determined from a sequence of volume-limited
samples is inconsistent with the fractal prediction and shows no significant variation of r0 with
the sample size (fig. 7). As expected, extracting subsamples from one volume-limited sample
with Rmax = 120h−1Mpc does not change this behaviour, although the fluctuations increase in
the sparser samples (fig. 8). Clearly, there is neither an indication for a fractal scaling of r0 with
the sample depth nor for luminosity segregation (see also [13]). Due to the selection of galaxies
in the infrared one does miss early-type (e.g. elliptical) galaxies. Because of this selection one
does not find luminosity segregation in the PSCz [14]. To go beyond the error estimates relying
on the Poisson process I estimate the errors for ξ(r) from the fluctuations between eleven mock
galaxy catalogues, constructed from an N -body simulation based on a ΛCDM cosmology(1).
For such a clustered point distribution, the error bars are larger than in the case of the Poisson

(1)A description of the procedure and references to articles describing the simulation and the construction of
the mock catalogues can be found in [15].
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Fig. 7 Fig. 8

Fig. 7 – ξ(r) for a sequence of volume-limited samples with changing limiting luminosity Llim from
the PSCz determined with the Landy and Szalay estimator with marks similar to fig. 3. The smooth
solid line is ξ(r) for a fractal with D = 2.2 and r0(70h

−1Mpc) according to eq. (2). Two-σ error bars
are shown only for the 120h−1Mpc sample. The larger error bars were determined from the mock
catalogues. The Poisson error bars are slightly shifted to the left.

Fig. 8 – ξ(r) for samples with varying depth but with the same limiting luminosity Llim extracted
from a volume-limited sample of the PSCz with a depth of Rmax = 120h

−1Mpc similar to fig. 4.
Marks as in fig. 7, but the two-σ error bars are shown only for the 70h−1Mpc sample.

process, but still of the same order (see figs. 7, 8). In both models, these errors are smaller
than the predicted effects of fractal scaling on ξ(r) (two-σ error bars are shown in the plots).

Summary. – By analysing three different galaxy catalogues I could show that the ampli-
tude of the correlation function ξ(r) is depending on the luminosity. Luminosity segregation
has already been found in the SSRS2, CfA2 and also the 2dF and the SDSS galaxy catalogues
(see, e.g., [10, 16–21]). In these investigations, mainly volume-limited samples with varying
depths or directly flux-limited samples have been used. Using such samples one is not able
to separate the influence of luminosity segregation from a possible fractal scaling. In samples
with a fixed lower limit in the luminosity and then reducing the depth of the samples I found
no significant changes in the correlation function. Specifically, I found no sign for a growth
of the correlation length r0 with increasing sample depths in these cases. This is a strong
indication that the growth of r0 in standard volume-limited samples is caused by luminosity
segregation, and a fractal explanation is disfavoured. Using a similar construction, the au-
thors of [3] found a growing r0 in the Perseus Pisces survey (PPS). Our consistent results,
both from the significantly larger SSRS2 and the CfA2 indicate that the PPS is too small in
size to give reliable results. In the CfA2, the authors of [22] found also no significant growth
of r0 using a comparable method. Reference [14] used mark correlation functions to quantify
the luminosity dependency of the galaxy clustering in the SSRS2 in a scale-dependent way,
uninfluenced by inhomogeneities.

I limited my investigations to the question: what causes the growing amplitude of the
two-point correlation function? Already, with the current galaxy catalogues one is able to
show that the amplitude of the two-point correlation function depends on the luminosity of
the galaxies. If one a priori assumes that the galaxy distribution is a fractal, these results
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may be interpreted as large fluctuations, which indeed are common in fractals. However,
these fluctuations must conspire in all the samples considered here, to give the observed
result of a constant amplitude of the two-point correlation function. Fluctuations in the
morphological properties of the large-scale distribution of galaxies have been detected out
to a scale of 200h−1Mpc [15]. However, these fluctuations are barely visible with two-point
measures, and they are still compatible with fluctuations expected from a ΛCDM model. I
did not comment on the topic, whether one already does see a turnover to homogeneity from
current galaxy surveys [15], and whether ξ(r) or Γ(r) shows the more extended scaling regime.
For a discussion see [5, 23]. I expect that the completed Sloan Digital Sky Survey will offer
conclusive evidence for these points.
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M. Joyce, M. Montuori and, especially, to C. Beisbart. I acknowledge support from the
Sonderforschungsbereich 375 für Astroteilchenphysik der DFG.

REFERENCES

[1] Mart́ınez V. J. and Saar E., Statistics of the Galaxy Distribution (Chapman and Hall, Lon-
don) 2001.

[2] Peebles P. J. E., The Large Scale Structure of the Universe (Princeton University Press,
Princeton) 1980.

[3] Sylos Labini F., Montuori M. and Pietronero L., Phys. Rep., 293 (1998) 61.
[4] Pietronero L., Phys. Rev. A, 144 (1987) 257.
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