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Abstract. – We introduce a set of order parameters to classify the possible equilibrium states
of rotating self-gravitating systems. As an example, the formation and thermodynamics of
asymmetric binaries is discussed.

Gravity-dominated systems such as classical self-gravitating gases are known to possess
highly non-standard thermodynamic properties [1–3]. The long-range nature of the Newto-
nian potential prevents extensivity [4], causing such features as the inequivalence of statistical
ensembles, the occurrence of negative specific heats and of collapse transitions, and the exis-
tence of inhomogeneous ground states [5–9]. These attributes are not peculiar to gravitating
gases alone. Similar traits mark the behaviour of systems with long-range, non-integrable
potentials [10], of finite systems or of systems of a size comparable to the interaction range,
such as atomic clusters or highly excited (“hot”) nuclei [11, 12], are even present in certain
short-ranged models [13] and in general at phase separations [14]. Besides the relevance to
astrophysics and cosmology strictly speaking, understanding the equilibrium state of self-
gravitating systems is hence important also from a broader, fundamental viewpoint [14].

Recently [15, 16] (to be later referred to as I), we investigated the possible equilibrium
shapes of three-dimensional rotating self-gravitating gases via a microcanonical mean-field
theory in which the system is confined in a finite spherical volume V with the total energy E
and the total angular momentum L conserved, the short-distance singularity of the Newtonian
potential being cured by the use of Lynden-Bell statistics [5]. At high E (kinetic energy domi-
nates), the system lives in a homogeneous “gas”-like state, eventually deformed by rotation to
a disk. At low E, instead, gravity induces a collapse to either a single dense “star”-like cluster
(low L), or to symmetric “binaries” (two identical dense clusters, high L). These three phases
are separated, at intermediate E and L, by a large phase-coexistence region with negative
specific heat, where dense structures (either a single cluster or a binary) embedded in a vapor
are found.

Clearly, the above picture does not account for all possible equilibrium states. In particular,
at high angular momenta it is to be expected that several maximum-entropy states exist, as
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a result of multiple bifurcations of the solutions of the equation describing entropy maxima.
Such new solutions can be discovered only through the application of appropriate “fields”, i.e.
by devising appropriate order parameters. In this paper we introduce a convenient family of
order parameters which allows to construct all such solutions, including “exotic” ones with
negligible entropy, and classify them hierarchically. As an example, we describe the formation
and thermodynamics of asymmetric binaries (which are far more common in the universe than
symmetric ones and were excluded from I), along with some rare equilibria.

We begin by recalling the key steps in the theory of I. The Hamiltonian is (i, j = 1, . . . , N)

H =
1
2m

∑
i

p2i −Gm2
∑
i<j

|ri − rj |−1 (1)

with ri ∈ V ⊂ R
3 denoting the position and pi ∈ R

3 the momentum of the i-th particle, m
being its mass. G is the gravitational constant. The task is to find the particle density profiles
that maximize Boltzmann’s entropy S = k logW , where the state sum W is given by

W =
α

N !

∫
δ(H − E)δ

(
L −

∑
i

ri × pi

)
d3Nr d3Np (2)

with α a constant. W is a function of E and L, as are S and the desired density profiles. The
radius R of the box is taken to be fixed. Adhering to the notation of I, we shift to the reduced
variable x = r/R, which we shall indicate as x = (x1, x2, x3) (Cartesian representation) or
x = (x, θ, φ) (spherical representation). Particles are assumed to have “hard cores” [5] and
to fill a finite, not too large (to avoid jamming) volume fraction of the container. A simple
way to implement the latter assumption is to choose the density profile c to satisfy 0 ≤ c ≤ 1
and to be normalized as

∫
c(x) dx = Θ. Θ is a parameter (0 ≤ Θ ≤ 4π/3) related to the

fraction of V occupied by particles. Throughout this study, as in I, we take it to be Θ = 0.02,
a value that turns out to be sufficiently large to avoid dilution and sufficiently small to avoid
overfilling. Finally, we take m = 1 and measure energy and angular momentum in units of
GN2/R and

√
RGN3, respectively.

One can calculate W explicitly by combining a Laplace transform method (integrals over
momenta) with an appropriate coarse-graining in real space (integrals over positions, see I for
details). At stationary points of the entropy surface S/k = logW , i.e. points where δS/δc = 0,
it is found that the above-defined density profile c satisfies the condition

log
c(x)

1− c(x) =
β

Θ

∫
c(x′)

|x − x′| dx′ +
1
2
β(ω × x)2 − µ , (3)

where

β =
3/2[

E − 1
2LT I−1L − Φ[c]

] , (4)

ω = I
−1L is the angular velocity, and µ is a Lagrange multiplier implementing the constraint

on Θ. I and Φ stand for the inertia tensor I = (Iab)3a,b=1 in units of NR2 and the gravitational
potential in units of GN2/R, respectively:

Iab[c] =
1
Θ

∫
c(x)

(
x2δab − xaxb

)
dx, Φ[c] = − 1

2Θ2

∫
c(x)c(x′)
|x − x′| dxdx′. (5)

In general, the solutions of eq. (3) can be written in spherical coordinates as

c(x) =
∞∑

l=0

l∑
m=−l

blm(x)Ylm(θ, φ), (6)
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where the “weights” blm(x) of the spherical harmonics Yl,m have to be determined by solving
(numerically) a system of integral equations whose precise form, discussed in I, is not important
for our present purposes. If L lies along the 3-axis and if the center of mass is fixed at x = 0,
entropy-maximizing solutions of (3) can be divided into two main classes:

a) Axial-rotationally (around the 3-axis) symmetric ones, e.g. gas-cloud (high E, low L),
distorted gas clouds or disks (high E, high L), and single clusters (low E, low L). These
are independent of the φ angle, and thus for them the series (6) must involve only the
zonal harmonics, with m = 0.

b) Axial-rotationally asymmetric ones, like double clusters or binaries. These, instead, must
depend on φ and hence on harmonics withm �= 0. They can be either spatially symmetric
(like symmetric binaries, SBs) or spatially asymmetric (asymmetric binaries, ABs).

Each of these should be signaled by a non-zero value of a precise order parameter. Notice
that, fixing the center of mass requires exclusion of l = 1 harmonics from (6), since defining
〈. . .〉 := ∫

. . . c(x) dx one has, using (6) and carrying out the appropriate integrations,

xCM
1 ≡ 〈x1〉 =

√
4π
3

∫
x3b1,1(x) dx,

xCM
2 ≡ 〈x2〉 =

√
4π
3

∫
x3b1,−1(x) dx,

xCM
3 ≡ 〈x3〉 =

√
4π
3

∫
x3b1,0(x) dx. (7)

A convenient quantifier for homogeneous solutions and single clusters is

D0,0 =
∣∣∣∣
∫
x2b0,0(x) dx

∣∣∣∣. (8)

It is simply a constant proportional to Θ, since, recalling that
∫
c(x) dx ≡ 〈1〉 = Θ, one has∫

c(x) dx = 2
√
π

∫
x2b0,0(x) dx.

For disk solutions, it is convenient to consider the quantity

〈
x2 − 3x2

3

〉
= −

√
16π
5

∫
x4b2,0(x) dx. (9)

In fact, for a homogeneous gas or, in general, for a perfect spherical cloud one would have
〈x2 − 3x2

3〉 = 0 evidently. When rotation deforms the cloud by shrinking it along the 3-axis,
one has 〈x2 − 3x2

3〉 �= 0. Hence for disks one can use the order parameter

D2,0 =
∣∣∣∣
∫
x4b2,0 dx

∣∣∣∣. (10)

The order parameter discerning axial-rotationally symmetric structures from axial-rota-
tionally asymmetric ones must account for some φ-dependence. With the center of mass fixed
at x = 0, the lowest-order term in (6) that can provide such a feature is the sectoral harmonics
l = 2. Indeed, the most convenient order parameter is

D2,2 =
∣∣∣∣
∫
x4b2,2(x) dx

∣∣∣∣, (11)
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Fig. 1 – (a) Behaviour of D22 as a function of energy at L = 0.6. (b) Behaviour of D3,1 as a function
of energy at L = 0.46.

which is proportional to the difference between the diagonal components of the inertia tensor
in the 1 and 2 directions. Using (5) and (6) it is in fact easy to see that

D2,2 = Θ

√
15
16π

∣∣I11 − I22∣∣. (12)

In I, D2,2 was used as an order parameter for SBs, but it is evidently non-zero also for
ABs. In oder to distinguish these two states, one needs a further order parameter. On physical
grounds, the natural choice is 〈x3

1〉 (if the two clusters are aligned along the x1-axis), since in
spatially asymmetric structures this quantity must be non-zero because of evident symmetry
reasons, at odds with what must happen in spatially symmetric structures. Now using (6)
one can see by working out explicitly the integrals involving spherical harmonics that

〈
x3

1

〉
=

√
12π
25

∫
x5b1,1(x) dx−

√
6π
175

∫
x5b3,1(x) dx+

√
2π
35

∫
x5b3,3(x) dx. (13)

In principle, all of the above terms should be considered. However, in any spatially symmetric
structure (gas, single cluster, SBs) all of them are zero, because odd harmonics cannot con-
tribute due to their symmetry properties. Each of them is non-zero only in the presence of
spatial asymmetries, as in ABs; hence any of them can be employed as an order parameter.
In particular, we find it convenient to use the quantity

D3,1 =
∣∣∣∣
∫
x5b3,1(x) dx

∣∣∣∣, (14)

whose behaviour at L = 0.46 is shown in fig. 1b, together with the behaviour of D2,2 (fig. 1a).
At odds with SBs, ABs were not discussed in I, where odd harmonics were excluded from (6).
It is therefore interesting to discuss their formation and thermodynamics at this point.

AB solutions of (3) appear suddenly at E = −0.18 for L = 0.46, where the order parameter
jumps discontinuously from zero to a finite value (at odds with SBs which emerge continuously
from class (a) solutions, see I). They exist and are stable in a small range of values of L up
to L � 0.5. This whole region lies in the mixed phase with negative specific heat of I, hence
asymmetric binaries at equilibrium are embedded in a vapor and they do not exist as a
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Fig. 2 – Three ABs obtained from eq. (3). The contour plot is shown together with the density profile.
(a) Incipient binary, with a broad low-density body detached from the central cluster. (b) Intermediate
stage. (c) Well-formed binary (very low energy).

“pure” phase (for a discussion about pure phases and phase separation in the microcanonical
ensemble, see [14]). A sample of asymmetric binaries obtained in this way is shown in fig. 2.
In their range of existence (except for their beginning) ABs are significantly more probable
than SBs, as shown in fig. 3a, where the entropy of the different stable solutions at L = 0.46 is
shown. A simple physical argument suffices to explain why at high angular momenta ABs must
have a much lower entropy than SBs, if they exist at all. SBs have a larger moment of inertia
than ABs, hence a smaller rotational energy. As a consequence, for SBs the “random” kinetic
contribution E−L2/(2I) is larger than for ABs. Thus they have a larger entropy. So ABs are
expected to be strongly suppressed or significantly less probable at high angular momenta.
Indeed, we were unable to find stable ABs for L > 0.5. The fact that ABs tend to form the
smaller cluster in proximity of the boundary of the box is due to the fact that they originate
by the evaporation of small masses from a single large, dense cluster. The conservation
of the center of mass relegates them to the border. In well-formed binaries, the peak of
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Fig. 3 – (a) Entropy of the different stable solutions of eq. (3) at L = 0.46. The quantity 4E has been
subtracted from the entropy to make the separation and the curvature more evident. (b) Caloric
curve β vs. E at L = 0.46. Notice that in spite of the fact that ∂Eβ < 0 along most of the AB branch,
the curvature of the entropy surface as a function of E and L, i.e. SEESLL − S2

EL, is negative along
all of the AB branch.
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Fig. 4 – Two “exotic” solutions of (3) obtained via the order parameters (15). (a) Single cluster
surrounded by a ring. (b) Single cluster with two “satellites”. These solutions coexist at E = −0.5
and L = 0.7.

density in the smaller cluster is separated from the boundary. Interestingly, however, the AB
entropy branch does not merge with the SB branch, implying that SBs cannot be formed by
evaporating increasing amounts of particles from a central cluster. In fig. 3b the caloric curve
β = ∂S/∂E vs. E is shown at L = 0.46. The jump occurring at E = −0.2, where ABs become
more favorable than SBs, is an artifact of the asymptotics employed in deriving (3). (Being
S a smooth and multiply differentiable function, such a feature is clearly spurious.)

On a general level, it is reasonable to argue from the above discussion that one can classify
the different equilibrium states by introducing the family of order parameters defined by

Dl,m =
∣∣∣∣
∫
xl+2bl,m(x) dx

∣∣∣∣ (15)

with integers l = 0, 1, 2, . . . and m = −l,−l + 1, . . . , l. As we have seen, for small l, each
of these functions has a simple physical interpretation. (As for the remaining D2,m’s, they
can be easily seen to be related to the off-diagonal components of the inertia tensor (5).) It
is clear that higher-order D’s are all connected to homogeneous polynomials in x1, x2, x3,
which are in turn connected to the Cartesian representation of spherical harmonics [17]. For
example, for l = 3, D3,0 is connected to the quantity 〈2x3

3 − 3x2
1x3 − 3x2

2x3〉. Their physical
interpretation for larger l is however less straightforward.

Using these order parameters, solutions can be classified hierarchically. In our setting,
with the center of mass fixed at x = 0 one has the following picture. Homogeneous gas clouds
have all Dlm’s equal to zero except D0,0. For deformed clouds (disks) only Dl,0 with l even are
non-zero. For symmetric binaries (which are connected to “gas”-like solutions continuously,
see fig. 3a), also D2,2 �= 0 (and, in general, all Dl,m with l and m even), all other D’s being
zero, while for asymmetric binaries D3,1 is also not zero. This classification can be continued
further, for the order parameters (1) allow to construct all possible solutions of (3), by adding
a proper field that selects the solution for which the chosen order parameter is not zero. As
an example, we show in fig. 4 two of several equilibria that can be obtained in this way at
very high angular momentum. Of course, such “exotic” solutions of (3), if stable, have much
lower entropy than those discussed in I or than ABs (also, as they are stitching to the walls
of the container, they are mostly of academic interest).

To summarize, we have introduced a family of order parameters that allow to characterize
the different equilibrium shapes that can be encountered (homogeneous gas, disk, symmetric
binary, asymmetric binary, along with more exotic states) in self-gravitating systems, and
discussed their physical meaning in simple cases. In particular, we have used such order
parameters to describe the formation and thermodynamics of asymmetric binaries, which
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require odd terms in (6) and were excluded in I. The present study does not substantially
alter the global phase diagram presented there, since asymmetric binaries do not exist as
a “pure” thermodynamic state. Among the problems that remain open we would like to
mention the following two. First is the dependence on Θ. Our results have been obtained
at fixed Θ = 0.02. Different Θ’s may lead to different results. By letting Θ → 0 (in which
limit Lynden-Bell statistics goes to Boltzmann statistics and the l.h.s. of eq. (3) goes to the
Boltzmann form log c(x)), one obtains the case of overlapping particles (no hard cores), which
is a classical problem in cosmology dating back to [18]. The rotating case is dealt with in [19].
For such “Boltzmann” particles we have not found any evidence of asymmetric binaries. On
the other hand, when Θ grows (Θ ≤ 4π/3) the system may become too closely packed and
the interesting features one observes for small Θ might disappear at some point. The second
problem is the dependence on R. Throughout this paper we have assumed that R is fixed, but
it would be interesting to analyze these questions in a context in which R varies, for instance
to mimic an expanding-universe scenario as suggested, e.g., in [20].
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