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Abstract. – We study the tolerance to congestion failures in communication networks with
scale-free topology. The traffic load carried by each damaged element in the network must
be partly or totally redistributed among the remaining elements. Overloaded elements might
fail on their turn, triggering the occurrence of failure cascades able to isolate large parts of the
network. We find a critical traffic load above which the probability of massive traffic congestions
destroying the network communication capabilities is finite.

Complex heterogeneous connectivity patterns have recently been identified in several nat-
ural and technological networks [1–3]. The Internet and the World-Wide-Web (WWW) net-
works, where nodes represent routers or web pages and edges physical connections or hyper-
links, appear to have a topology characterized by the presence of “hubs” with many connec-
tions to peripherical nodes. Empirical evidence recently collected shows that this distinctive
feature finds its statistical characterization in the presence of heavy tailed degree distribu-
tions [4–11]. In the Internet, for instance, the statistical analysis reveals that the degree
distribution P (k), defined as the probability that any node has k links to other nodes, is well
approximated by a power law behavior P (k) ∼ k−γ , with γ ≈ 2.2 [5, 7, 11]. This makes the
Internet a capital example of the recently identified class of scale-free (SF) networks [2]. The
statistical-physics approach has been proved to be a valuable tool for the study of complex net-
works, and several interesting results concerning dynamical processes taking place on complex
networks have recently been reported. In particular, the absence of the percolation [12, 13]
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and epidemic [14, 15] thresholds in SF networks has a large impact because of its potential
practical implications. The absence of the percolating threshold, indeed, prompts to an excep-
tional tolerance to random damages [16]. This is a property that assumes a great importance
in communication networks, guaranteeing the connectivity capabilities of the system.

Percolation properties of SF networks refer only to the static topological connectivity
properties [12, 13]. On the other hand, in the Internet and other communication networks,
many instabilities are due to traffic load congestions [17, 18]. The traffic load carried on the
failing nodes or connections is automatically diverted to alternative paths on the networks
and instabilities can spread from node to node by an avalanche of traffic congestions and
overloads which can lead to the transient loss of connectivity for large portions of the Internet.
These instabilities are thus of a dynamical nature and depend on how information is routed
and distributed in the network. Several models proposed so far, however, deal with regular
structures [19, 20]. Very recently, there have been some attempts to study cascade failures in
static [21,22] and evolving [23,24] complex networks.

In this paper, we propose a simple model aimed at the study of failure cascades generated
by the redistribution of traffic load by congested links or nodes in SF networks. We find that
the system behavior depends on the average traffic load imposed to the network. Above a
critical value of the average traffic load, a single failure has a finite probability of triggering a
congestion avalanche affecting a macroscopic part of the network. The present analysis thus
reveals the existence of a transition from a free phase to a congested one as a function of the
amount of traffic carried by the network. Contrary to what happens for the static percolation
transition [12, 13], loaded SF networks exhibit a finite threshold above which the system can
develop macroscopic instabilities with respect to small damages if we consider the dynamics
of the traffic carried on top of them. The results provided here represent a step towards a
more complete modeling of traffic instabilities in real communication networks.

In order to include the degree fluctuations of SF networks, we shall use in the following
the Barabási-Albert model [25]. This is a stochastic growth model in which one starts from a
small number m0 of nodes and at each time step a new node is introduced. The new node is
connected preferentially to m old ones (for the simulations we used m = 3) with a probability
Π(ki) = ki/

∑
j kj proportional to the degrees ki of the nodes. The repeated iteration of this

scheme gives as a result a complex network with a topological structure characterized by a
power law degree distribution P (k) = 2m2k−γ with γ = 3 and average degree 〈k〉 = 2m.
In principle, one might also consider a more general class of complex networks with variable
power law degree distributions [2, 3].

To simulate the flow of data packets on SF networks, taking into account the load redistri-
bution in case of damages, we need to specify the initial state of the network; i.e. the load of
traffic flowing through each link. An estimate of such load, assuming that the routing takes
place following the minimum path, is given by the total number of shortest paths between
any two nodes in the network that pass through the node i [23,24]. This magnitude is called
betweenness or load [26, 27] and has recently been studied in SF networks. This property of
the network can also be defined in terms of links. In real systems, however, the amount of
traffic carried by each link is a fluctuating quantity that depends on many variables such as
number of users, routing agreements, and available bandwidth. For this reason, we associate
to each link connecting the nodes i and j of the network a load 	i,j drawn from a probability
distribution that specifies the initial traffic load of the system [28]. For simplicity, we have
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considered a uniform distribution U(	) for 0 < 	 < 1, taking the form

U(	) =




1
2〈	〉 , 	 ∈ [

0, 2〈	〉], if 〈	〉 ≤ 0.5,

1
2(1 − 〈	〉) , 	 ∈ [

2〈	〉 − 1, 1
]
, if 〈	〉 ≥ 0.5.

(1)

This uniform distribution implies that the minimum initial load carried by a link is bounded
by a nonzero value for an average load 〈l〉 > 0.5, which means that there will be no links with
load smaller than this lower bound. The results reported in this paper were obtained with
the initial distribution U(	). In order to test the universality of the critical behavior, we have
also considered the distribution F (	) = (〈	〉−1 − 1)(1− 	)(〈�〉

−1−2), 	 ∈ [0, 1], which allows the
existence of links with a very small load, irrespective of the average load 〈	〉 flowing through
the system. Both distributions U(	) and F (	) yield the same qualitative results. Along with
the load, we associate to each link the same capacity C that, without loss of generality, we fix
equal to one. This choice can be considered as a first approximation since the actual difference
between line bandwidths in communication networks can be large. In this perspective, we
consider as the most important source of heterogeneity the flow of different amounts of load
through the network.

The dynamics of the model is defined by a simple threshold process. A link is selected at
random and overloaded by raising its traffic. When the load carried by a link is 	i,j > C, i.e.
when it exceeds the link’s capacity, the link is considered congested and the load it carries is
diverted among its (not overloaded) neighboring links, i.e. the links departing from the end
nodes of the congested one. This amounts to consider that the time scale of the local conges-
tion is greater than the time scale characterizing the reorganization of the routing procedure.
The redistribution of the load on its turn might provoke that other links become overloaded,
thus triggering a cascade of failures. We have explored two physically different settings of the
load redistribution rule. The first consists of equally distributing the load of a congested link
among the non-congested neighboring links. We refer to it as the deterministic redistribution
rule. The second case will be called random redistribution because when a link is overloaded,
a random amount of load is redistributed to each of the remaining working links in its neigh-
borhood. Finally, we note that in the rare event in which the congested link has no active
neighbors, its load can be equally shared among all the remaining working lines of the network
or just be considered as lost from the network. This amounts to a conserved or dissipative
redistribution rule, respectively. Many physical systems display criticality only when energy
is conserved [30, 31]. In distributed networks such as the Internet, however, it is common
to discard packets if there is not a route available at the moment. As we shall see in the
following, the results do not depend qualitatively on the conserved nature of the traffic load.

We have performed large-scale numerical simulations by applying repeatedly the rules
stated above on BA networks. The sizes of the networks used in the simulations range from
N = 5×103 nodes (15×103 links) to N = 105 nodes (3×105 links). All numerical results have
been obtained by averaging over 10 different networks and, at least, 100 different realizations
of the initial load distribution.

In order to inspect the occurrence of dynamic instabilities, we construct the phase diagram
of the system. The order parameter can be identified as the probability PG of having a
giant component G of connected nodes with size of the order of the network size. The giant
component is defined as the largest component of the network made by nodes connected by
active links, after the system has reached a stable state (when 	i,j < C for all i and j).
The existence of a giant component implies that a macroscopic part of the network is still
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Fig. 1 – Phase diagram of the system. PG measures the probability of having a giant component of
active nodes G of the order of the system size. Three different definitions of the model are represented:
(a) random and dissipative, (b) random and conserved, and (c) deterministic and conserved. In all
cases the size of the system has been set to N = 104 nodes (3× 104 links).

functional. If the giant component of the network is zero, the communication capabilities of
the network are destroyed and a congestion of the order of the system size builds up. It is
worth noticing that, although we have determined the giant component size in terms of nodes
and the dynamical rules of the model are expressed in terms of links, the results are completely
equivalent since a connected node is defined as a node with at least one active link.

In fig. 1 we plot the order parameter PG as a function of the average load 〈	〉. At low
values of the average load, the network always reaches a stable state in which the number of
isolated nodes is very small and with probability PG = 1 the network has a giant component
of connected nodes of the order of the system size. When increasing the load imposed on the
network, the system starts to develop instabilities. In particular, above a critical load 〈	〉Ic,
whose value depends on the model considered, with a finite probability the system evolves
to a congested state without giant component of connected nodes; i.e. the largest set of
connected active nodes has a density of order N−1. This implies a probability of having a giant
component PG < 1, which is decreasing as the load is progressively increased. At an average
load 〈	〉IIc � 0.82 we get that PG = 0, signalling that, with probability one, any instability will
propagate until the complete fragmentation of the network. It is worth remarking that this
scenario is rather different from the percolation one in which the probability of having a giant
component is abruptly dropping from one to zero at the transition point. Here, the probability
decays continuously to zero and we have a wide region of 〈	〉 where the initial instability can
trigger a destructive congestion with probability 1−PG . In addition, we provide a measure of
the density of completely isolated nodes. In the absence of a giant component, beyond a few
small clusters of connected nodes, the majority of the network is made by completely isolated
nodes. Figure 2 illustrates the probability p(S) that the density of isolated nodes is S in the
case that no giant component of connected nodes has survived. The distribution is rather
peaked also at relatively small values of 〈	〉, providing evidence that as soon as a major failure
is triggered, it affects almost the totality of the network.

The phase diagram obtained in fig. 1 points out that the value of the average load at which
PG = 0 is relatively high. On the other hand, the value at which PG is appreciably smaller
than one is well below the theoretical capacity of the network measured as the capacity C = 1
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Fig. 2 – Distribution of the isolated network size p(S) as a function of S for several values of 〈�〉. The
network is formed by N = 104 nodes.

of the individual links (〈	〉Ic � 0.15–0.3, see fig. 1). This evidence defines a wide region of
load values in which there is a small but finite probability that a small instability propagates
through the system and could explain why in real communication networks congestions of
diverse degree can be encountered from time to time. In fig. 1 we also report curves obtained
for the different dynamical rules defined previously, and it is interesting to remark that the
highest level of stability has been obtained for the deterministic and conservative version of
the model (〈	〉Ic � 0.3). Moreover, the dynamics of the transition does not depend on the
distribution of initial loads and the network size N .

Another way to shed light on the congestion dynamics is to inspect the process of generation
of the congestion instability. We define the size s of a congestion burst or avalanche as the total
number of simultaneously overloaded links. The cumulative distribution P (s) of avalanches
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Fig. 3 – Cumulative distributions of avalanche sizes for different values of the average load handled by
the network for the random and dissipative definition of the model. The straight line in a linear-log
plot indicates that the probability avalanche distribution follows a power law with exponent −1. The
inset shows the scaling of the cumulative size of congested lines as the network grows in size for
〈�〉 = 0.25.
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of size larger than s for several values of the average load imposed on the network and three
different system sizes have been plotted in fig. 3 for the random and dissipative definition of
the present model. The main plot is in log-linear scale, so that a straight line corresponds to a
power law of the form p(s) ∼ s−1 for the probability of observing an avalanche of size s. Power
laws with exponent −1 have been found for several characteristic features of Internet traffic
such as latency times, queue lengths, and congestion lengths [19,32,33]. In the figure we focus
on a region close to the stable one 〈	〉 � 0.20, which means that the power law behavior extends
to values far from the instability transition. This fact confirms that it is not necessary that the
network operates very close to a critical point in order to observe power laws in the distribution
of several quantities. The inset in fig. 3 shows that the cumulative size of overloaded links also
scales with the system size, the scaling dynamics, however, remaining the same. This may
help to understand why power law distributions observed in real communication networks
have been measured for different network sizes, i.e. both for local networks and for networks
that extend to a very large scale.

In summary, we have introduced a simple threshold model aimed at the description of
instabilities due to load congestion that takes into account the topological properties of SF
networks. The results obtained point out that the network can freely handle traffic up to some
critical average load 〈	〉Ic. Above this level the network faces partial congestions that start to
build up local bottlenecks in various places and small instabilities might trigger macroscopic
outages with a finite probability. Above a critical load value 〈	〉IIc � 0.82 any small instability
leads to the whole network collapse. In the intermediate region of network load, the number
of simultaneous line casualties follows a power law resembling what has been observed in
experimental studies of the Internet. We hope that our work will provide hints for accurate
modeling of the Internet and the WWW large-scale traffic behavior.
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