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Abstract. – We investigate spin precession in the presence of randomly distributed magnetic
moments which reorient by thermally activated transitions. Based on analytical calculations
and scaling arguments, we find that the polarisation decay of a spin ensemble exhibits a rich
behaviour characterised by stretched exponentials and power laws. The anomalous relaxation
laws result from heavy-tailed local field distributions and are verified by computer simulations.
The general problem is discussed in the context of µSR in random assemblies of superparam-
agnetic clusters.

Introduction. – The dynamics of disordered systems is often governed by spatial and
temporal fluctuations that can be described by Gaussian statistics due to the central limit
theorem (CLT). However, in an increasing number of systems it is found that anomalous
broad Lévy distributions of the fluctuations play a key role [1]. Lévy distributions generalise
the CLT if the fluctuations arise from a superposition of independent random contributions
whose distributions exhibit no finite second moment [2]. Intriguing consequences for dynamical
processes in many different scientific disciplines have been explored, mainly in the context of
anomalous long-range transport phenomena (see, e.g., [3]).

In this letter we investigate the effects of anomalous fluctuations on the local dynamics of
spin systems. The precession dynamics of a spin probe in a local field H(t) is described by [4]

dS

dt
= S × H. (1)

Several experimental techniques, such as, e.g., nuclear and electron magnetic resonance (NMR,
ESR), muon spin relaxation (µSR), and βNMR, rely on eq. (1), which should be understood as
the equation of motion of the quantum-mechanical expectation value. In the phenomenologi-
cal approach by Bloch, the effects of fluctuating fields H(t) are taken into account by adding
relaxation terms to eq. (1). These give rise to exponential decays of an initial spin polarisation
with relaxation rates that can be expressed by spectral densities of the field fluctuations [5].
For non-exponential relaxations, however, the standard Bloch approach can no longer be
straightforwardly applied. We may distinguish two particularly relevant cases: i) The fluc-
tuations exhibit long-range temporal correlations, 〈H(t)H(0)〉 ∼ t−ν with ν ≤ 1 such that
c© EDP Sciences
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a characteristic correlation time does not exist, and ii) the field distribution ψ(H) of local
fields is anomalously broad, e.g. H2ψ(H) ∼ H−1−η with η < 2, such that it exhibits no finite
second moment. The first case is often referred to in the analysis of spin glass systems [6, 7].

The second case arises quite naturally when considering an ensemble of independent spins
in a system of randomly distributed field sources. As an example of practical importance we
refer in this work to µSR in random assemblies of superparamagnetic clusters [8, 9], whose
magnetic moments reorient with a thermally activated rate ν. The corresponding dipolar
fields decay as r−3 with distance from the spin probe. For testing our theoretical predictions,
we more generally consider fields decaying as r−µ.

The aim of our work is as follows. We will show how broad local field distributions emerge
in this conceptually simple system and how they give rise to rich anomalous spin relaxation
scenarios, whose long-time relaxation behaviour is characterised by power laws and stretched
exponentials with exponents depending on µ and d. We will make new predictions for µSR
experiments in the systems referred to above. Due to the generality of the problem and the
simple scaling arguments we invoke, our findings should also be of importance for related
problems, where the precession dynamics plays a fundamental role.

Model. – To be specific, we consider the following model. We place a spin S at the
origin of a d-dimensional system that contains randomly oriented point-like magnetic clusters
with mean number density n at random positions (Poisson distribution of the cluster number
in a volume ∆V with mean cluster number n∆V ). A cluster with moment m and position
r is assumed to induce a field contribution h = m/rµ at the probe site. Each moment m
changes its orientation to a set of possible other orientations with the rate ν. In particular we
study two situations: In the first case, only the directions m and −m are possible (uniaxial
case), while in the second case there are four additional orientations perpendicular to m
corresponding to a cubic symmetry (multiaxial case). Initially, the spin is polarised in the
z-direction, S = (0, 0, 1). The task is to solve eq. (1) for a given cluster configuration and
a certain realization of the cluster reorientation process and to average this solution over all
possible realizations. By finally averaging over all cluster configurations we obtain the spin
polarisation 〈Sz(t)〉 at time t as measured in experiment. In the following we will discuss the
relaxation behaviour for the generic situation µ > d/2 [10].

Local field distribution, static case. – We start out by focusing on the time regime
t � ν−1, where the field H =

∑
i hi can be viewed to be static, and the solution of eq. (1)

reads Sz(t) = (H2
z /H2) + [1 − (H2

z /H2)] cos(Ht). The probability density ψh(h) for the field
h = m/rµ of an individual cluster at distance r from the spin probe scales as h2ψh(h) ∼
rd−1|dr/dh| ∼ h−1−d/µ. Hence, for d/µ < 2 a second moment does not exist and the proba-
bility density ψ(H) of the total local field H should, according to Lévy statistics [2], also scale
as H2ψ(H) ∼ H−1−d/µ for large H. This was first discussed in [11] in the context of dilute
dipolar or RKKY spin glasses with power law interactions. By an exact calculation we obtain

ψ(H) = − 1
2πW 2H

Re L′
d
µ ,0

(
H

W

)
, (2)

where Re L′
α,0(u) denotes the real part of the derivative of the Lévy stable law Lα,0(u) =

(2π)−1
∫

dk exp[−iku − |u|α] to the index (α, 0). For d = µ, i.e. in particular for dipo-
lar fields in d = 3, one obtains a three-dimensional variant of the Lorentzian, ψ(H) =
1/π2W/(W 2 + H2)2 [12]. The characteristic width W = CW mnµ/d is given by the field
associated with the mean distance n−1/d of the clusters times a constant [13]. As expected,
4πH2ψ(H) ∼ CψW−1(H/W )−1−d/µ for large H.
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Fig. 1 – Spin polarisation 〈Sz(t)〉 as a function of νt in the slowly fluctuating case (ν/W = 10−4)
for (a) multiaxial and (b) uniaxial cluster moments, and several µ and d. The symbols refer to the
simulations and their assignment is the same in both figures. The dashed lines refer to the exact
result (3), while the solid lines are fits according to the long-time behaviours (4), (7). The inset in
(a) shows, on a semi-logarithmic scale, the exponential long-time relaxation of 〈Sz(t)〉 vs. νt that
is almost independent of d and µ (the solid line is drawn as a guide for the eye). The inset in (b)
demonstrates the scaling (6) for 4 different radii r1 � n−1/d, r1 = 1.0 (+), 1.5 (×), 2.0 (∗), and 2.5
(◦) in the case µ = d = 3, n = 0.01.

Averaging Sz(t) over ψ(H) eventually yields

〈
Sz(t)

〉
=

1
3

+
2
3

[
1 − d

µ
(Wt)d/µ

]
exp

[
− (Wt)d/µ

]
. (3)

For d = µ, one recovers the Lorentzian Kubo-Toyabe function [14]. As shown in fig. 1 for
different µ and d, the results from our simulations agree with eq. (3) for νt � 1. Laws
of type (3) have been used in the literature to describe anomalous µSR line-shapes with
d/µ 	= 1, 2 that neither follow a Lorentzian (d/µ = 1) nor Gaussian (d/µ = 2) behaviour (see,
e.g., [15]). We note, however, that (3) is an exact result and should not be confused with an
effective “power Kubo-Toyabe function” [16] that serves as a fitting function.

Case of slowly fluctuating cluster moments. – In the dynamic regime t 
 ν−1 we distin-
guish between the two cases of slowly or rapidly fluctuating cluster moments, where ν � W
or ν 
 W , respectively. In both cases we employ scaling arguments to derive the typical
decay rates Γ of the spin polarisation. To tackle the problem of averaging over spatial cluster
configurations, we consider subensembles of configurations that are specified by fixing the
distances of the clusters closest to the spin probe. This concept is motivated by the hierarchy
implied by the Lévy statistics, which for the field distribution (2) means that the n-th nearest
cluster gives a contribution of order nµ/d times smaller than the closest cluster (see, e.g., [17]).

Let us begin with the case ν � W of slowly fluctuating cluster moments, where for the
relevant cluster configurations the field H has a magnitude H 
 ν (other configurations
have an exponentially small weight). In a time interval of order ν−1 then, the spin precesses
many periods around the local field, whereby Sz(t) oscillates around a mean value S̄z(t). The
changes of S̄z(t) averaged over many realizations of the cluster dynamics determine the decay
of spin polarisation.

In the multiaxial case, significant changes of H, which occur in a time of order ν−1, alter
the axis of precession and S̄z(t) relaxes with a rate proportional to ν. Hence we expect a
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simple exponential decay
〈Sz(t)〉 ∼ exp[− const νt] , (4)

which is confirmed by our simulations shown in fig. 1a.
The uniaxial case is more subtle. To see this, we decompose the field H into the contri-

bution h1 = m/rµ
1 from the nearest cluster at distance r1 and the contribution H1 from the

other clusters, H = h1 + H1. In the subensemble of all cluster configurations with given r1,
the variance of H1 is 〈

H2
1 | r1

〉
= CHh2

1

(
h1

W

)−d/µ

. (5)

For r1 
 n−1/d, h1/W � 1, and H1 dominates over h1. Hence one encounters the same
physical situation as in the multiaxial case. For small r1 � n−1/d, however, h1 is dominant,
so that changes h1 → −h1 essentially revert the direction of precession and leave S̄z(t)
unchanged.

In this situation of small r1 � n−1/d the presence of the contribution H1 causes the axis of
the field H (irrespective of its direction) to wobble around the ±h1-axis with the rate ν and
an angular amplitude of order H1/h1. The wobbling motion together with the much faster
precession leads to a diffusive type of motion of S̄z(t) with a diffusion rate Γ ∼ (H1/h1)2ν.
As will be substantiated in the following, this leads to an extremely slow long-time decay of
the polarisation dominated by those spins which are relatively close to one cluster (large h1)
and far away from any other clusters (small H1).

To extract the asymptotic relaxation of the spin polarisation, we consider the subensemble
of all cluster configurations with fixed distances r1 and r2 of the nearest and second-nearest
cluster to the spin probe. In the configurations of this subensemble we can decompose H1 into
h2 and H2, where h2 = m/rµ

2 and 〈H2
2 | r2〉 satisfies (5) with h1 replaced by h2. Accordingly,

for r1 < r2 � n−1/d, H2
1 ∼ m2/r2µ

2 and Γ ≡ Γ(r1, r2) ∝ (r1/r2)2µν, while for r2 � n−1/d,
H2

1 ∼ W d/µ(m/rµ
2 )2−d/µ and Γ(r1, r2) ∝ r2µ

1 W d/µ(m/rµ
2 )2−d/µν. Writing 〈Sz(t) | r1, r2〉 ∼

exp[−Γ(r1, r2)t] in the subensemble with given r1 and r2, we can average over the probability
density φ2(r2 | r1) = Sdnrd−1

2 exp[−Vdn(rd
2 − rd

1)] of r2 (r1 ≤ r2 < ∞) to obtain [18]

〈
Sz(t) | r1

〉 ∼ exp
[
Vdnrd

1 − const
[
(n1/dr1)2µνt

]d/2µ
]

(6)

for νt 
 1 (and r1 � n−1/d). We have verified this prediction for various µ and d by our
simulations. One example (for µ = d = 3) is shown in the inset of fig. 1b.

Final averaging over the probability density φ1(r1) = Sdnrd−1
1 exp[−Vdnrd

1 ] of r1 yields
〈
Sz(t)

〉 ∼ (νt)−d/2µ . (7)

This slow power law decay is in marked contrast to the exponential decay in the multiaxial
case and it is verified in fig. 1b by our simulations.

Case of rapidly fluctuating cluster moments. – Next we discuss the case ν 
 W of
rapidly fluctuating cluster moments. The field H in the relevant cluster configurations now
has a magnitude H � ν and the spin rotates only by a small angle in a time interval of order
ν−1. This means that the concept of a mean value S̄z(t) is not useful any longer, since the
phase of the precession matters. Reorientations of h1 are effective for the spin relaxation both
in the presence of uniaxial and multiaxial cluster moments.

The small angular changes of the spin lead again to a diffusive type of motion of Sz(t). In
time ν−1 the angular change is of order H/ν and the corresponding diffusion rate Γ ∼ (H/ν)2ν.
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Fig. 2 – Spin polarisation 〈Sz(t)〉 as a function of W 2t/ν in the case of rapidly fluctuating cluster
moments (ν/W = 10 (�), 50 (+), and 100 (×) for d = µ = 3, and ν/W = 10 for the three other
combinations of d and µ). Data points refer to the simulations and the solid lines are fits according
to eq. (8). The inset shows the exponential decay of 〈Sz(t) | r1〉 and the scaling as discussed in the
text for 4 different radii r1 � n−1/d, r1 = 6.5 (+), 7.0 (×), 7.5 (∗), and 8.0 (◦) in the case µ = d = 3,
and n = 0.01 (the solid line is drawn as a guide for the eye).

Decomposing the field H = h1+H1 as before, and taking into account the dominant contribu-
tions, we thus find Γ ≡ Γ(r1) ∝ ν−1m2/r2µ

1 for r1 � n−1/d and Γ(r1) ∝ ν−1W d/µ(m/rµ
1 )2−d/µ

for r1 � n−1/d (cf. eq. (5)). We then write 〈Sz(t) | r1〉 ∼ exp[−Γ(r1)t] for νt 
 1 and r1 

(m/ν)1/µ (for r1 � (m/ν)1/µ, h1 
 ν, i.e. one encounters a situation corresponding to the case
of slowly fluctuating clusters moments, which is subdominant here except for uniaxial clusters
at very long times, see below). This exponential decay of 〈Sz(t) | r1〉 is demonstrated in the
inset of fig. 2 for d = µ = 3 in the regime r1 > n−1/d. By averaging over r1 we finally obtain〈

Sz(t)
〉 ∼ exp

[
− const

(
ν−1W 2t

)d/2µ
]
. (8)

To perform the average we have used a saddle point approximation, where analogous comments
apply as given in [18]. It is interesting to note that similar stretched exponential relaxation
laws were derived in the case of NMR by averaging over a distribution of Bloembergen-Purcell-
Pound–type relaxation rates [19]. Figure 2 confirms both the scaling with (W 2t/ν) and the
stretched exponential decay for the same µ and d values as in fig. 1. In the uniaxial case the
stretched exponential decay (8) will, at long times, be masked by the much slower power law
decay (7) that stems from the rare configurations with h1 = m/rµ

1 
 ν.

Discussion. – In summary, we have shown that spin precession in the presence of ran-
domly distributed and fluctuating field sources leads to an anomalous relaxation of an initially
polarised spin probe, which is characterised by stretched exponentials (eqs. (3), (8)) or power
laws (eq. (7)). The deviations from a simple exponential decay are caused by Lévy-type local
field distributions (eq. (2)). These render a treatment in terms of Gaussian processes impos-
sible, but allowed us to perform an analysis based on subensembles of cluster configurations
that are defined with respect to the most dominant contributions to the local field, i.e. the
field sources closest to the spin probe.

It is important to stress that a simple mean-field–type description of the relaxation process
would fail, as was already pointed out by Uemura et al. [20] in the case µ = d = 3. In such
a mean-field description one might employ a “strong collision approximation” [21], where the
field H at the probe site is drawn anew from (2) with the rate ν (thereby neglecting the
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fluctuations in the spatial cluster configurations). By scaling arguments similar to those out-
lined above, one can show that this approach leads, for t 
 ν−1, to an exponential relaxation
〈Sz(t)〉 ∼ exp[−Γmft] both in the cases of slowly and rapidly fluctuating cluster moments and
irrespective of whether the clusters possess only one easy axis or more. For ν � W , one
obtains Γmf ∝ ν, while for ν 
 W , Γmf ∝ ν(W/ν)d/µ [22].

Our approach can be readily applied to experiments [8,9]. For example, for the system in [8]
the width W = C ′

W nm [13] follows from the experimental known parameters n and m without
any additional modelling [23]. Moreover, our work allows us to make new predictions. For
example, one can test for dimensionality effects in the anomalous relaxation laws by depositing
superparamagnetic cluster onto a surface (or by embedding them in separated layers within a
bulk material). Both the static and the dynamic situation will be accessible by tuning W via
the cluster concentration n, and by tuning ν = ν0 exp[−Eaniso/T ] via the temperature T . For
example, for the multiaxial iron nanoclusters used in [9], one finds for the attempt frequency
ν0 � 109 s−1 and for the anisotropy energy Eaniso � 51 K. In that experiment W � 7×105 s−1

(for 0.1% volume fraction iron in a silver matrix), implying a crossover from the static to the
dynamic situation around a temperature Tx = Eaniso/ ln(ν0/W ) � 7 K.

We restricted our treatment here to point clusters with unique moment m and neglected
interactions between the moments. As long as the cluster sizes are much smaller than the mean
distance n−1/d, crossover effects to a Debye-like relaxation behaviour typical for Gaussian
processes should be of minor importance. A broad distribution of cluster sizes, however, may
require a refined analysis in the dynamic regime by defining the subensembles with respect to
both the nearest-cluster distance and the cluster size (in the static regime the results remain
unchanged except that m has to be replaced by its average value). One can easily generalise
our approach to situations where an additional external field is present. The µSR experiment
then corresponds closely to a measurement of the transverse relaxation in NMR probes.

Interactions between the cluster moments at high temperatures T can be accounted for
by a temperature-dependent width W = W (T ) in (2) (for an approximate calculation in
µ = d = 3, see [24]). At low temperatures T , by contrast, the cluster dynamics cannot be
described any longer by a Poisson process with rate ν. For dipolar systems in d = 2, 3, this
occurs for T � 2m2nd/3 [25, 26]; e.g., in the materials studied in [8, 9] this would be below
1 K. In this low-temperature regime the problem becomes more difficult and the relaxation
laws (7), (8) may no longer hold true. A non-Poissonian cluster dynamics is often encountered
in spin glasses [6, 7], orientational glasses [27] and related systems [28].

Having mentioned these limits of our findings, we hope that our work will stimulate further
research on the challenging problem of spin precession in disordered systems. Our scaling
methods should give deeper insight into the spin relaxation in disordered systems and may be
extended to describe µSR or related dynamical probes also in other complex systems.
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