

Reply to the Comment by S. Rombouts *et al.*on "New criteria for bosonic behaviour of excitons"

To cite this article: M. Combescot and C. Tanguy 2003 EPL 63 787

View the article online for updates and enhancements.

You may also like

- <u>Reply to the Comment by Andrés G. Jirón</u> <u>Vicente et al.</u> Faizuddin Ahmed
- <u>Reply to the Comment on 'The operational</u> <u>foundations of PT-symmetric and quasi-</u> <u>Hermitian quantum theory'</u> Abhijeet Alase, Salini Karuvade and Carlo Maria Scandolo
- <u>Reply to the Comment by Justo Pastor</u> Lambare Eugen Muchowski

1 September 2003

Europhys. Lett., **63** (5), pp. 787–788 (2003) Reply

Reply to the Comment by S. Rombouts *et al.* on "New criteria for bosonic behaviour of excitons"

M. COMBESCOT¹ and C. TANGUY²

 GPS, Université Denis Diderot and Université Pierre et Marie Curie, CNRS Tour 23, 2 place Jussieu, 75251 Paris Cedex 05, France
² Laboratoire d'Optique Appliquée, ENSTA-Ecole Polytechnique, CNRS UMR 7639 Chemin de la Hunière, 91761 Palaiseau Cedex, France

(received 3 March 2003; accepted in final form 27 June 2003)

PACS. 71.35.Lk – Collective effects (Bose effects, phase space filling, and excitonic phase transitions).

We agree with Rombouts, Van Neck and Pollet (RVNP) that the problem of interacting close-to-boson particles like excitons is not trivial. For this reason, notations must be accurate so as to avoid confusion and/or misleading interpretations. We call N the number of electron-hole (e-h) pairs in the system and B_i^{\dagger} the creation operator of the exact exciton *i*, defined by $(H - E_i)B_i^{\dagger}|v\rangle = 0$, where H is the exact semiconductor Hamiltonian written in terms of fermions (electrons and holes). These exact excitons differ from bosons because $[B_i, B_j^{\dagger}] \neq \delta_{ij}$. Those willing to treat excitons as bosons from the start, introduce other exciton operators \bar{B}_i^{\dagger} such that $[\bar{B}_i, \bar{B}_j^{\dagger}] = \delta_{ij}$. Using these operators, they replace H by an effective bosonic Hamiltonian $H_{\text{eff}} = \bar{H}_0 + \bar{V}$, the non-interacting part reading $\bar{H}_0 = \sum_i E_i \bar{B}_i^{\dagger} \bar{B}_i$.

We now consider RVNP's Comment. They call the "e-h pair number" and the "boson number" with the same letter N, which is misleading since the problem is precisely to find the number of e-h pairs which can be considered as bosons. Their B^{\dagger} is clearly our groundstate exciton creation operator B_0^{\dagger} . On the opposite, the meaning of the other operator B^{\dagger} appearing in their Hamiltonian (3) is unclear. In view of the effective Hamiltonian \bar{H}_0 , we are led to think that $B^{\dagger} = \bar{B}_{0}^{\dagger}$, so that their Hamiltonian would just correspond to one term of the non-interacting part of the effective bosonic Hamiltonian. However, RVNP's previous work [1] —which is an extended version of this Comment— leads us to believe that \hat{B}^{\dagger} and B^{\dagger} are in fact identical (in spite of the fact that B^{\dagger} , written b_0^{\dagger} in their letter, reads in terms of electrons $a^{\dagger}_{k}a^{\dagger}_{-k}$ and not in terms of electrons and holes $a^{\dagger}_{k}b^{\dagger}_{-k}$ as it should). This uncertainty on the precise meaning of B^{\dagger} does not help to discuss their results, since the issue is essentially to know to which extent we can consider that $B_0^{\dagger} \simeq \bar{B}_0^{\dagger}$, *i.e.*, $\hat{B}^{\dagger} \simeq B^{\dagger}$ if $B^{\dagger} \equiv \bar{B}_0^{\dagger}$. RVNP introduce a "boson occupation number N_c ", which they call "exciton occupation number" later on —although excitons are not always bosons. This $N_{\rm c}$ is first defined as the expectation value of $\hat{B}^{\dagger}\hat{B}$, which is then replaced by $B^{\dagger}B$. There is no doubt that, if $B^{\dagger} \equiv \bar{B}_0^{\dagger}$, the operator $B^{\dagger}B$, *i.e.* $\bar{B}_0^{\dagger}\bar{B}_0$, is the ground-state boson number operator. On the opposite, if B^{\dagger} is not \bar{B}_0^{\dagger} but B_0^{\dagger} , the physical meaning of $B^{\dagger}B$ is not clear. One of the goals of our letter was precisely to determine to which extent $B_0^{\dagger}B_0$ may be considered as a boson number operator.

Let us recall the spirit of our approach: In the low-density limit, N e-h pairs in their ground state $|\psi^{(N)}\rangle$ are close to N ground-state excitons. To lowest order in $\eta = Na_X^3/V$, $\langle \psi^{(N)}|H|\psi^{(N)}\rangle \simeq NE_0 \simeq \langle v|B_0^N H B_0^{\dagger N}|v\rangle/\langle v|B_0^N B_0^{\dagger N}|v\rangle$ (see [2,3]). Although the basis for N e-h pairs made of the N-exciton states $B_{i_1}^{\dagger} \cdots B_{i_N}^{\dagger}|v\rangle$ is overcomplete and non-orthogonal [4], it can be used to expand $|\psi^{(N)}\rangle$. It leads to $|\psi^{(N)}\rangle \simeq B_0^{\dagger N}|v\rangle$ at lowest order in η , in agreement with Keldysh and Koslov [5]. We know that, when $H = H_0 + V$, the Coulomb interaction V between N-fermion states is unimportant for $\langle 0|V|0\rangle \ll \langle 0|H_0|0\rangle$, $|0\rangle$ being the N-fermion state in the absence of interactions. In the same way, we can use $B_0^{\dagger N}|v\rangle$, the zeroth-order exciton state in η , i.e., in Coulomb and Pauli interactions, to estimate when N pairs deviate from N ground-state bosons. This deviation is physically linked to the Pauli part of these X-X interactions. There is however a formal difficulty to assess when it is small, since this Pauli part is not characterized by a potential V_{Pauli} . We may see $[B_0, B_0^{\dagger}] = 1 - D_{00}$ as being the equivalent of $H = H_0 + V$ with respect to this Pauli part. This led us to impose $\langle v|B_0^N D_{00} B_0^{\dagger N}|v\rangle \ll \langle v|B_0^N B_0^{\dagger N}|v\rangle$. We can also view $B_0^{\dagger} B_0$ as representing the number of bosons if $[B_0, B_0^{\dagger}] \simeq 1$, i.e., if $B_0^{\dagger} \simeq \bar{B}_0^{\dagger}$. This led us to $\langle v|B_0^N B_0^{\dagger N}|v\rangle$ close to its exact boson value $N\langle v|B_0^N B_0^{\dagger N}|v\rangle$. The first criterion gives $100\eta \ll 1$ while the second one gives $50\eta \ll 1$: These results are consistent with each other [6].

In their Comment, RVNP claim that the number of bosons is the expectation value of $B^{\dagger}B$ in an appropriate ground state, supposedly "exact". This is correct if and only if $B^{\dagger} = \bar{B}_{0}^{\dagger}$. However, within this boson framework, the excitons are viewed as bosons from the start, so that there is no way to assess when they deviate. On the opposite, if B^{\dagger} is not \bar{B}_{0}^{\dagger} but B_{0}^{\dagger} , we have shown that $B^{\dagger}B$ can be associated to the ground-state boson number for $50\eta \ll 1$ only, so that we contest the meaning of their result for $\eta \simeq 1/4\pi$. Moreover, we question the validity of results obtained using their eq. (3) instead of the exact H. Either $B^{\dagger} = \bar{B}_{0}^{\dagger}$, and again excitons are considered as bosons from start, or $B^{\dagger} = B_{0}^{\dagger}$ and we do not know any *clean* procedure to transform the *exact* H into their eq. (3): The exciton *vs.* boson problem is too subtle to trust results obtained from uncontrolled approximations, guesses and/or wishful thinkings.

To conclude, our aim is to find the properties of N e-h pairs in their ground state as an expansion in $\eta = Na_X^3/V$. The η terms come from both Coulomb interaction and Pauli exclusion, the last one being physically linked to the close-to-boson character of the excitons. Contrary to RVNP's claim, the state $B_0^{\dagger N} |v\rangle$ is definitely relevant: It is the N-pair ground state at lowest order in η . Moreover, $B_0^{\dagger}B_0$ can be associated to a boson number operator for $50\eta \ll 1$ only, so that we contest using it up to $\eta \simeq 1/4\pi$. We wish to stress that our criterion for bosonic behavior of excitons does not mean that excitons cannot undergo Bose-Einstein condensation, but just that, above say $\eta \simeq 1/100$, the critical density for BE condensation cannot be taken as that for non-interacting bosons: Excitons do exist according to the Mott criterion, but their interactions (Pauli and Coulomb) must be taken into account.

REFERENCES

- [1] ROMBOUTS S., VAN NECK D., PEIRS K. and POLLET L., Mod. Phys. Lett. A, 17 (2002) 1899.
- [2] COMBESCOT M., LEYRONAS X. and TANGUY C., Eur. Phys. J. B, 31 (2003) 17.
- [3] BETBEDER-MATIBET O. and COMBESCOT M., Eur. Phys. J. B, 31 (2003) 517.
- [4] COMBESCOT M. and BETBEDER-MATIBET O., Europhys. Lett., 58 (2002) 87; BETBEDER-MATIBET O. and COMBESCOT M., Eur. Phys. J. B, 27 (2002) 505.
- [5] KELDYSH L. V. and KOZLOV A. N., Sov. Phys. JETP, 27 (1968) 521.
- [6] Being of course valid as leading-order corrections in η , they should not be used beyond their validity range, as performed by RVNP in fig. 1 of their Comment.