IOP Institute of Physics

Reply to the Comment by S. Rombouts et al.on "New criteria for bosonic behaviour of excitons"

To cite this article: M. Combescot and C. Tanguy 2003 EPL 63787

View the article online for updates and enhancements.

You may also like
Reply to the Comment by Andrés G. Jirón Vicente et al. Faizuddin Ahmed

Reply to the Comment on 'The operational foundations of PT-symmetric and quasiHermitian quantum theory' Abhijeet Alase, Salini Karuvade and Carlo Maria Scandolo

Reply to the Comment by Justo Pastor Lambare
Eugen Muchowski

Reply to the Comment by S. Rombouts et al. on "New criteria for bosonic behaviour of excitons"

M. Combescot ${ }^{1}$ and C. Tanguy ${ }^{2}$
${ }^{1}$ GPS, Université Denis Diderot and Université Pierre et Marie Curie, CNRS Tour 23, 2 place Jussieu, 75251 Paris Cedex 05, France
${ }^{2}$ Laboratoire d'Optique Appliquée, ENSTA-Ecole Polytechnique, CNRS UMR 7639 Chemin de la Hunière, 91761 Palaiseau Cedex, France

(received 3 March 2003; accepted in final form 27 June 2003)
PACS. 71.35.Lk - Collective effects (Bose effects, phase space filling, and excitonic phase transitions).

We agree with Rombouts, Van Neck and Pollet (RVNP) that the problem of interacting close-to-boson particles like excitons is not trivial. For this reason, notations must be accurate so as to avoid confusion and/or misleading interpretations. We call N the number of electronhole (e-h) pairs in the system and B_{i}^{\dagger} the creation operator of the exact exciton i, defined by $\left(H-E_{i}\right) B_{i}^{\dagger}|v\rangle=0$, where H is the exact semiconductor Hamiltonian written in terms of fermions (electrons and holes). These exact excitons differ from bosons because $\left[B_{i}, B_{j}^{\dagger}\right] \neq \delta_{i j}$. Those willing to treat excitons as bosons from the start, introduce other exciton operators \bar{B}_{i}^{\dagger} such that $\left[\bar{B}_{i}, \bar{B}_{j}^{\dagger}\right]=\delta_{i j}$. Using these operators, they replace H by an effective bosonic Hamiltonian $H_{\text {eff }}=\bar{H}_{0}+\bar{V}$, the non-interacting part reading $\bar{H}_{0}=\sum_{i} E_{i} \bar{B}_{i}^{\dagger} \bar{B}_{i}$.

We now consider RVNP's Comment. They call the "e-h pair number" and the "boson number" with the same letter N, which is misleading since the problem is precisely to find the number of e-h pairs which can be considered as bosons. Their \hat{B}^{\dagger} is clearly our groundstate exciton creation operator B_{0}^{\dagger}. On the opposite, the meaning of the other operator B^{\dagger} appearing in their Hamiltonian (3) is unclear. In view of the effective Hamiltonian \bar{H}_{0}, we are led to think that $B^{\dagger}=\bar{B}_{0}^{\dagger}$, so that their Hamiltonian would just correspond to one term of the non-interacting part of the effective bosonic Hamiltonian. However, RVNP's previous work [1] - which is an extended version of this Comment - leads us to believe that \hat{B}^{\dagger} and B^{\dagger} are in fact identical (in spite of the fact that B^{\dagger}, written b_{0}^{\dagger} in their letter, reads in terms of electrons $a_{\boldsymbol{k}}^{\dagger} a_{-\boldsymbol{k}}^{\dagger}$ and not in terms of electrons and holes $a_{\boldsymbol{k}}^{\dagger} b_{-\boldsymbol{k}}^{\dagger}$ as it should). This uncertainty on the precise meaning of B^{\dagger} does not help to discuss their results, since the issue is essentially to know to which extent we can consider that $B_{0}^{\dagger} \simeq \bar{B}_{0}^{\dagger}$, i.e., $\hat{B}^{\dagger} \simeq B^{\dagger}$ if $B^{\dagger} \equiv \bar{B}_{0}^{\dagger}$. RVNP introduce a "boson occupation number N_{c} ", which they call "exciton occupation number" later on -although excitons are not always bosons. This N_{c} is first defined as the expectation value of $\hat{B}^{\dagger} \hat{B}$, which is then replaced by $B^{\dagger} B$. There is no doubt that, if $B^{\dagger} \equiv \bar{B}_{0}^{\dagger}$, the operator $B^{\dagger} B$, i.e. $\bar{B}_{0}^{\dagger} \bar{B}_{0}$, is the ground-state boson number operator. On the opposite, if B^{\dagger} is not \bar{B}_{0}^{\dagger} but B_{0}^{\dagger}, the physical meaning of $B^{\dagger} B$ is not clear. One of the goals of our letter was precisely to determine to which extent $B_{0}^{\dagger} B_{0}$ may be considered as a boson number operator.
(c) EDP Sciences

Let us recall the spirit of our approach: In the low-density limit, N e-h pairs in their ground state $\left|\psi^{(N)}\right\rangle$ are close to N ground-state excitons. To lowest order in $\eta=N a_{\mathrm{X}}^{3} / V$, $\left\langle\psi^{(N)}\right| H\left|\psi^{(N)}\right\rangle \simeq N E_{0} \simeq\langle v| B_{0}^{N} H B_{0}^{\dagger N}|v\rangle /\langle v| B_{0}^{N} B_{0}^{\dagger N}|v\rangle$ (see [2,3]). Although the basis for N e-h pairs made of the N-exciton states $B_{i_{1}}^{\dagger} \cdots B_{i_{N}}^{\dagger}|v\rangle$ is overcomplete and non-orthogonal [4], it can be used to expand $\left|\psi^{(N)}\right\rangle$. It leads to $\left|\psi^{(N)}\right\rangle \simeq B_{0}^{\dagger N}|v\rangle$ at lowest order in η, in agreement with Keldysh and Koslov [5]. We know that, when $H=H_{0}+V$, the Coulomb interaction V between N-fermion states is unimportant for $\langle 0| V|0\rangle \ll\langle 0| H_{0}|0\rangle, \quad|0\rangle$ being the N-fermion state in the absence of interactions. In the same way, we can use $B_{0}^{\dagger N}|v\rangle$, the zeroth-order exciton state in η, i.e., in Coulomb and Pauli interactions, to estimate when N pairs deviate from N ground-state bosons. This deviation is physically linked to the Pauli part of these X-X interactions. There is however a formal difficulty to assess when it is small, since this Pauli part is not characterized by a potential $V_{\text {Pauli. }}$. We may see $\left[B_{0}, B_{0}^{\dagger}\right]=1-D_{00}$ as being the equivalent of $H=H_{0}+V$ with respect to this Pauli part. This led us to impose $\langle v| B_{0}^{N} D_{00} B_{0}^{\dagger N}|v\rangle \ll\langle v| B_{0}^{N} B_{0}^{\dagger N}|v\rangle$. We can also view $B_{0}^{\dagger} B_{0}$ as representing the number of bosons if $\left[B_{0}, B_{0}^{\dagger}\right] \simeq 1$, i.e., if $B_{0}^{\dagger} \simeq \bar{B}_{0}^{\dagger}$. This led us to $\langle v| B_{0}^{N}\left(B_{0}^{\dagger} B_{0}\right) B_{0}^{\dagger N}|v\rangle$ close to its exact boson value $N\langle v| B_{0}^{N} B_{0}^{\dagger N}|v\rangle$. The first criterion gives $100 \eta \ll 1$ while the second one gives $50 \eta \ll 1$: These results are consistent with each other [6].

In their Comment, RVNP claim that the number of bosons is the expectation value of $B^{\dagger} B$ in an appropriate ground state, supposedly "exact". This is correct if and only if $B^{\dagger}=\bar{B}_{0}^{\dagger}$. However, within this boson framework, the excitons are viewed as bosons from the start, so that there is no way to assess when they deviate. On the opposite, if B^{\dagger} is not \bar{B}_{0}^{\dagger} but B_{0}^{\dagger}, we have shown that $B^{\dagger} B$ can be associated to the ground-state boson number for $50 \eta \ll 1$ only, so that we contest the meaning of their result for $\eta \simeq 1 / 4 \pi$. Moreover, we question the validity of results obtained using their eq. (3) instead of the exact H. Either $B^{\dagger}=\bar{B}_{0}^{\dagger}$, and again excitons are considered as bosons from start, or $B^{\dagger}=B_{0}^{\dagger}$ and we do not know any clean procedure to transform the exact H into their eq. (3): The exciton vs. boson problem is too subtle to trust results obtained from uncontrolled approximations, guesses and/or wishful thinkings.

To conclude, our aim is to find the properties of N e-h pairs in their ground state as an expansion in $\eta=N a_{\mathrm{X}}^{3} / V$. The η terms come from both Coulomb interaction and Pauli exclusion, the last one being physically linked to the close-to-boson character of the excitons. Contrary to RVNP's claim, the state $B_{0}^{\dagger N}|v\rangle$ is definitely relevant: It is the N-pair ground state at lowest order in η. Moreover, $B_{0}^{\dagger} B_{0}$ can be associated to a boson number operator for $50 \eta \ll 1$ only, so that we contest using it up to $\eta \simeq 1 / 4 \pi$. We wish to stress that our criterion for bosonic behavior of excitons does not mean that excitons cannot undergo Bose-Einstein condensation, but just that, above say $\eta \simeq 1 / 100$, the critical density for BE condensation cannot be taken as that for non-interacting bosons: Excitons do exist according to the Mott criterion, but their interactions (Pauli and Coulomb) must be taken into account.

REFERENCES

[1] Rombouts S., Van Neck D., Peirs K. and Pollet L., Mod. Phys. Lett. A, 17 (2002) 1899.
[2] Combescot M., Leyronas X. and Tanguy C., Eur. Phys. J. B, 31 (2003) 17.
[3] Betbeder-Matibet O. and Combescot M., Eur. Phys. J. B, 31 (2003) 517.
[4] Combescot M. and Betbeder-Matibet O., Europhys. Lett., 58 (2002) 87; BetbederMatibet O. and Combescot M., Eur. Phys. J. B, 27 (2002) 505.
[5] Keldysh L. V. and Kozlov A. N., Sov. Phys. JETP, 27 (1968) 521.
[6] Being of course valid as leading-order corrections in η, they should not be used beyond their validity range, as performed by RVNP in fig. 1 of their Comment.

