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Abstract. – In this letter I show that the recently proposed local version of the fluctuation
dissipation relations follows from the general principle of stochastic stability in a way that is
very similar to the usual proof of the fluctuation dissipation theorem for intensive quantities.
Similar arguments can be used to prove that in an aging experiment, where the averages are
done over many runs, all sites stay at the same effective temperature at the same time.

The fluctuation dissipation relations in off-equilibrium dynamics are a crucial tool to ex-
plore the landscape of a disordered system. These fluctuation dissipation relations are different
from the predictions of the fluctuation dissipation theorem at equilibrium. The existence of
these new relations has been firstly proved in mean-field theories [1–4]; however it has been
later shown that they follow from the general principle of stochastic stability [5–8], that,
roughly speaking, asserts that a random perturbation acts in a smooth way.
The fluctuation dissipation relations can be expressed in a rather simple form that can

be interpreted using the concept of the effective temperature [9, 10]. Moreover, the main
parameters entering into the fluctuation dissipation relations have a simple interpretation
in equilibrium statistical mechanics [1, 2, 8]: for a given system, the fluctuation dissipation
relations do not depend on how the system is put in an off-equilibrium situation (as soon as it
remains slightly out of equilibrium). These fluctuation dissipation relations have been amply
observed in numerical simulations [11–14] and quite recently in real experiments [15–17].
Observables that are the average over the whole sample are the mostly studied case. In

this case, there is a static-dynamic relation that connects the dynamic fluctuation dissipation
relations to the static average of global quantities. Recently, there have been a few investiga-
tions on fluctuation dissipation relations that involve only local variables [18,19]. The aim of
this letter is to derive these local fluctuation dissipation relations in a more general framework
and to find the appropriate static-dynamic relation. In order to reach this goal, we have to in-
troduce a new concept: the probability distribution of the single spin overlap, a generalization
of the probability distribution of the total overlap of the system.
Let us recall the usual equilibrium fluctuation theorem. If we consider a pair of conjugated

variables, the response function and the spontaneous fluctuations are deeply related. Indeed,
if Req(t) is the integrated response (i.e. the variation of the magnetization at time t when we
add a magnetic field from time 0 on) and Ceq(t) is the correlation among the magnetization
at time zero and at time t, we have that Req(t) = β(Ceq(0) − Ceq(t)), where β = (kT )−1.
If we eliminate the time and we plot parametrically Req as function of Ceq, we have that
−dReq/dCeq = β.
c© EDP Sciences



104 EUROPHYSICS LETTERS

In an aging system the generalized fluctuation dissipation relations can be formulated as
follows. Let us suppose that the system is carried from high temperature to low temperature
at time 0 and is in an aging regime. We can define a response function R(tw, t) as the variation
of the magnetization at time t when we add a magnetic field from time tw on. In a similar
way C(tw, t) is the correlation among the magnetization at time tw and at time t. We can
define a function Rtw(C): we must plot R(tw, t) vs. C(tw, t) by eliminating the time t in the
region t > tw, where the response function is different from zero.
The fluctuation dissipation relations state that for large tw the function Rtw(C) converges

to a limiting function R(C). We can define

−dR
dC

= βX(C), (1)

where X(C) = 1, for C > C∞, and X(C) < 1 for C < C∞, where we have defined C∞ =
limt→∞ Ceq(t).
The shape of the function X(C) gives important information on the free-energy landscape

of the problem [1–8]. It has been shown that in stochastically stable systems the functionX(C)
is related to equilibrium properties of the system. Let us illustrate this point by considering
for definitiveness the case of a spin glass. Given two equilibrium configurations σ and τ , we
define the global overlap as

q(σ, τ) = N−1
∑

i=1,N

σiτi, (2)

where N is the total number of spins. The function PJ(q) is the probability distribution of the
overlap for a given sample and the function P (q) is defined as the average of PJ(q) over the
samples. We introduce the function x(q) defined by dx(q)/dq = P (q). The relation among
the dynamic fluctuation dissipation relations and the statics quantities is simply

X(C) = x(C). (3)

Recent numerical results [18,19] indicate that the fluctuation dissipation relations and the
static-dynamics connection can be generalized to local quantities in systems where a quenched
disorder is present and aging is heterogeneous [20]. For one given sample we can consider the
local integrated response function Ri(tw, t), that is the variation of the magnetization at the
point i at time t when we add a magnetic field at the point i starting at the time tw. The
local correlation function Ci(tw, t) is the correlation between the spin at the point i at two
different times (i.e. tw and t). Quite often in a system with quenched disorder aging is very
heterogenous: the functions Ci and Ri change dramatically from one point to another [20].
It has been observed in simulations [18,19] that local fluctuation dissipation relations seem

to hold:
−dRi

dCi
= βXi(Ci), (4)

where Xi(Ci) has quite strong variations with the site i. In the framework of an explicit
model for the dynamics [18], it has been analytically shown that, in spite of these strong
heterogeneities, if we define the effective βeff

i at time t at the site i as

−dRi(tw, t)
dCi(tw, t)

= βXi(tw, t) ≡ βeff
i (tw, t), (5)

the quantity βeff
i (tw, t) does not depend on the site [18, 19]. In other words, a thermome-

ter coupled to a given site would measure (at a given time) the same effective temperature
independently of the site: different sites are thermometrically indistinguishable.
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The aim of this paper is to show that these results are a consequence of stochastic stability
in an appropriate contest and that there is a local relation among static and dynamics. The
crucial step consists in defining a local probability distribution of the overlap for a given
system at point i (i.e. Pi(q)). If we define xi(q) =

∫ q

0
Pi(q′)dq′, the static-dynamic connection

for local variables is very similar to the one for global variables and is given by Xi(C) = xi(C).
The definition of the local overlap should be different from the usual one. Indeed, the

local overlap of two equilibrium configurations (i.e. σiτi) is always equal to ±1. Naively, the
probability distribution of the local overlap would be the sum of two delta-functions at ±1. In
the same way, it is impossible to define a meaningful two-times correlation of a give quantity
in a single experimental run.
A useful definition of the local overlap can be obtained if we consider M identical copies

(or clones) of our sample: we introduce N × M σa
i variables, where a = 1,M (eventually, we

send M to infinity) and N is the (large) size of our sample (i = 1, N). The Hamiltonian in
this Gibbs ensemble is just given by

HK(σ) =
∑

a=1,M

H(σa) + εHR[σ], (6)

where H(σa) is the Hamiltonian for a fixed choice of the couplings J and HR[σ] is a random
Hamiltonian that couples the different copies of the system. A possible choice is HR[σ] =∑

a=1,M ;i=1,N Ka
i σa

i σa+1
i , where the variables Ka

i are identically distributed independent ran-
dom Gaussian variables with zero average and variance 1 (periodic boundary conditions in
clone space are implicitly used and a + 1 for a = M should be read as 1). We can consider
other ways to couple the systems (e.g., HR[σ] =

∑
a,b=1,M ;i=1,N Ka,b

i σa
i σb

i ), but let us stick
to the above one.
Our central hypothesis is that in the limit M → ∞ all intensive self-averaging quantities

(with respect to the different choices of K at fixed J) are smooth function of ε for small ε.
This hypothesis is a kind of generalization of stochastic stability. According to this hypoth-
esis, when ε → 0, the site-dependent correlation function and response function tend to the
result for ε = 0 uniformly in time. From now on the site-dependent correlation function is
redefined as Ci(t, t′) = M−1

∑
a=1,M 〈σi(t)σi(t′)〉 and a similar redefinition is done for the

response function.
In the case of small, but non-zero ε, let us take two equilibrium configurations σ and τ .

For given K, we consider the site-dependent overlap

qi(σ · τ) = M−1
∑

a=1,M

σa
i τa

i . (7)

We define the K-dependent probability distribution PK
i (q) as the probability distribution of

the above overlap. We finally obtain

Pi(q) = lim
ε→0

P ε
i (q), P ε

i (q) = PK
i (q), (8)

where the bar denotes the average over K, the limit ε → 0 is done after the limits M → ∞
and N → ∞ (alternatively, we keep ε2M and ε2N much larger than 1).
The proof of the local fluctuation dissipation relations can be obtained by copying, mutatis

mutandis, the proof of the usual fluctuation dissipation relations [8]. For example, we can
consider the following perturbation:

∆H
(2)
i ≡

∑
a=1,M ;b=1,M

ha,bσa
i σb

i , (9)
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where the variables h are Gaussian random variables with zero average and variance δ/M .
The Hamiltonian is modified by adding to it the term δ∆H

(2)
i at all times greater than tw. If

we assume, for simplicity, a Langevin type of time evolution, the same steps of [8] give

χ
(2)
i (tw, t) ≡ ∂∆H

(2)
i

δ
= 2

∫ t

tw

dt′Ci(t′, t)
∂Ri(t′, t)

∂t′
. (10)

The above equation can be rewritten as

χ
(2)
i (tw, t) = 2β

∫ 1

Ci(tw,t)

dCCXi(t, C), βXi

(
t, C(t′, t)

) ≡ ∂Ri(t′, t)
∂t′

(
∂Ci(t′, t)

∂t′

)−1

. (11)

Equivalently, Xi(t, C)=
∂Ri(t

′,t)
∂t′ (∂Ci(t

′,t)
∂t′ )−1, evaluated at the value of t′ such thatC(t′, t)=C.

Let us assume, for simplicity, that we stay in the region where Ci(tw, t) goes to zero when
t → ∞, so that the lower limit of integration can be set to zero. For finite δ, an integration
by parts tells us that 〈∆H

(2)
i 〉 = β

∫
dqPi(q)(1 − q2). If we make the crucial hypothesis that

the limits t → ∞ and δ → 0 may be exchanged, we get

lim
t→∞χ

(2)
i (tw,t) ≡ χ

(2)
i (tw) = 2

∫ 1

0

dCCXi(C) = β

∫
dqPi(q)

(
1− q2

)
, (12)

where we have also supposed the existence of the limit limt→∞ Xi(t, C) ≡ Xi(C); this last hy-
pothesis implies that χ

(2)
i (tw) does not depend on the time tw as it should be: the infinite time

limit of the response should be independent of the time at which the perturbation is added.
Generalizing the above arguments by introducing an s-spin perturbation ∆H

(s)
i (e.g.,

∆H
(3)
i =

∑
a,b,c=1,M ha,bσa

i σb
i σ

c
i ) we get

χ
(s)
i (twt) = s

∫ t

tw

dt′Ci(t′, t)s−1 ∂Ri(t′, t)
∂t′

=

= βs

∫
dCCs−1Xi(t, C) −→t→∞ β

∫
dqPi(q)(1− qs) = sβ

∫
dqxi(q)qs−1. (13)

Up to now we have assumed that limt→∞ Xi(t, C) exists. However, the same arguments of [8]
imply that using the above equations for all values of s, we can arrive at the conclusion that
the quantity Xi(t, C) has a limit when the time goes to infinity (i.e. to a formulation of the
local fluctuation dissipation relations). The limit is given by

Xi(C) = lim
t→∞Xi(t, C) = xi(C) ≡

∫ C

0

dqPi(q)dq. (14)

The above equations give the connection among static quantities and the local fluctuation
dissipation relations.
The thermometric indistinguishability of the sites can be proved by considering two far

away sites i and k and by introducing a perturbation that depends on both the spins at i and
the spins at k. A typical example is

∆H
(3,2)
i,k ≡

∑
a1,a2,a3,b1,b2=1,M

ha1,a2,a3,b1,b2
i σa1

i σa2
i σa3

i σb1
k σb2

k , (15)
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where the variables h are Gaussian random variables with zero average and variance δ/M4.
If we proceed as before, we find that the probability distribution Pi,k(qi, qk) can be written in
terms of the infinite time limits of Xi(t, Ci) and Xk(t, Ck) and of the function f tw

k,i defined by

Ck(tw, t) = f tw
k,i

(
Ci(tw, t)

)
, (16)

when tw and t are both large. If we disregard the possibility of oscillations, the function f tw
k,i

should have a limit when the time tw goes to infinity (this limit may be discontinuous if Ci

and Ck age on a different time scale). The absence of oscillations is a crucial hypothesis that
is automatically satisfied in any model where the local correlation at different times satisfies
simple scaling relations.
Let us assume that these extra hypotheses are satisfied. After some computation, we find

that
∫ (

1− qsi
i qsk

k

)
dPi,k(qi, qk) =

∫ t

tw

dt
[
Xi

(
t, Ci(t)

)∂Ci(t)si

∂t
Ck(t)sk + k ←→ i

]

−→
∫ 1

0

Xi(Ci)
(
fk,i(Ci)

)sk d(Ci)si + k ←→ i. (17)

If the functions Xi(Ci) and Xk(Ck) are equal for corresponding arguments, i.e.

Xi(Ci) = Xk

(
fk,i(Ci)

)
, (18)

we obtain that

Pi,k(qi, qk) = P (qi)δ
(
qk − fk,i(qi)

)
=

∫ 1

0

dxδ
(
qi − qi(x)

)
δ
(
qk − qk(x)

)
, (19)

where the last equality makes sense only in the case where the function qi(x) (i.e. the inverse
of xi(q)) is well defined.
If Xi(Ci) were not equal to Xkfk,i(Ci), Pi,k(qi, qk) would contain a new term proportion

δ′(qk − fk,i(qi)). The probability Pi,k(qi, qk) must be a positive distribution, a derivative
of delta-functions cannot be present in a probability and consistency implies that eq. (18)
holds. It is easy to see that this condition is just what is needed to impose the thermometric
indistinguishability of the sites during aging,

Xi

(
t, Ci(t)

)
= Xk

(
t, Ck(t)

)
. (20)

The above equation is non-trivial for Ci(t) < qEA
i , where the local Edwards-Anderson order

parameter is determined by the condition Pi(q) = 0 (or, equivalently, xi(q) = 1) for q > qEA
i .

The site dependence of the local Edwards-Anderson order parameter is a very important effect
and it is encoded in the local variations of the function Pi(q).
The probability distribution of the local overlap Pi(q), is related to a dynamical quantity:

it must depend only on the local environment around the point i and therefore it must have
a straightforward limit when the volume of the system goes to infinity (e.g., it should be
independent of the boundary conditions). It is remarkable that for far away points (i, k) the
two probability distributions Pi(q) and Pk(q) are independent one from the other, but the
joint probability distribution of qi and qk does not factorize as shown by eq. (19).
Summarizing, for a given sample it is possible to give a definition of a local probability

distribution of the overlap that depends on the site. The properties of this local probability
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distribution are related to the local fluctuation dissipation relations. The condition of thermo-
metric indistinguishability of the sites turns out to be a byproduct of our approach: during the
aging regime, all the sites are characterized by the same effective temperature. Here, we have
made no explicit assumption concerning the validity of static or dynamical ultrametricity or
on the existence of a large separation of the time scales. Although the generalized fluctuation
dissipation relations have been firstly derived in ultrametric mean-field models [1, 2], their
validity relies only on more general properties like stochastic stability.

∗ ∗ ∗

I am grateful to J. Kurchan for an illuminating discussion.
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