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Abstract. – The iterated random walk is a random process in which a random walker moves
on a one-dimensional random walk which is itself taking place on a one-dimensional random
walk, and so on. This process is investigated in the continuum limit using the method of
moments. When the number of iterations n → ∞, a time-independent asymptotic density is
obtained. It has a simple symmetric exponential form which is stable against the modification
of a finite number of iterations. When n is large, the deviation from the stationary density is
exponentially small in n. The continuum results are compared to Monte Carlo data for the
discrete iterated random walk.

Introduction. – When a walker moves at random along a straight support, its typical
displacement at time t grows like l ∼ t1/2. If the support of the walk is itself a random walk
(RW), at time t the walker is typically located at the l-th step of the walk on which it is moving.
Thus the mean-square displacement of the walker behaves as 〈X2(t)〉 ∼ l ∼ t1/2 and his actual
typical displacement is reduced, growing as t1/4 instead of t1/2 for the conventional RW.

This model of a RW on a RW has been studied for a one-dimensional support [1] and also
in higher dimensions [2,3]. It has been used to discuss the diffusion of the stored length along
a polymer chain entangled in a network [4–6] and the Brownian motion of charged particles
in a turbulent plasma [7]. In this latter case, the particles are constrained to diffuse along the
random magnetic-field lines in the limit B → ∞.

In this work we study the properties of the one-dimensional iterated random walk (IRW),
i.e., the RW on a RW which is itself a RW on a RW, and so on. The first three steps
of this iteration process are shown in fig. 1. Working in the continuum (Gaussian) limit,
we first study the moments 〈Xp(t)〉 of the probability density P (n)(X, t) to find the walker
at (X, t) after the n-th iteration. In the next section, we examine the limit n → ∞ for which
the asymptotic probability density P (∞)(X, t) can be obtained explicitly. We also look at
the way this asymptotic density is approached when n is large. Then the continuum result
is compared to Monte Carlo data for the discrete IRW. The universality of the asymptotic
probability density and possible generalizations are discussed in the final section.

Moments of the iterated probability density. – We assume that our random walker starts
from X = 0 at t = 0. All other one-dimensional RWs, on which he is moving, extend in time
from −∞ to +∞ and have a common origin. In the continuum limit, to the symmetric RW
is associated the Gaussian density

p(x, t) =
1√
2πt

exp
[
− x2

2t

]
, t > 0, (1)
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Fig. 1 – Construction of the position X of the random walker at time t for the IRW: the walker in (a)
starts at x0(0) = X(0) = 0 and moves at random along the sequence of steps of the RW in (b). Thus
the coordinate x0(t) is also the time coordinate t1 for the support in (b). In the same way, x1 gives
the number of steps t2 performed by the RW in (c) on which the RW in (b) takes place. Finally, at
t3 = x2, the last RW in (d) is located at X, which gives the actual position X(t) of the random walker.

and the probabilty density to find the walker at (X, t) after n + 1 iterations is obtained by
integrating the product of the successive probability densities p(xi, |ti|) with ti = xi−1, t0 = t
for the random walker and xn+1 = X for the last support, over all the intermediate coordinates
xi for i = 0 to i = n (see fig. 1):

P (n+1)(X, t)=
∫ +∞

−∞
dxnp(X, |xn|)

∫ +∞

−∞
dxn−1p(xn, |xn−1|) · · ·

∫ +∞

−∞
dx0p(x1, |x0|)p(x0, t). (2)

As a consequence, the iterated probability density satisfies the recursion relation

P (n+1)(X, t) =
∫ +∞

−∞
dxp(X, |x|)P (n)(x, t). (3)

In the following we leave the initial probability density P (0)(x, t) unspecified. Since the Gaus-
sian density p(X, |x|) in (3) is even in X, the same is true of all the iterated densities P (n)(x, t),
n > 0. Their odd moments vanish while their even moments are given by

M
(n)
2p (t) =

∫ +∞

−∞
dXX2pP (n)(X, t) = M(n)

2p (t), M(n)
p (t) =

∫ +∞

−∞
dX|X|pP (n)(X, t), (4)

where the moments M(n)
p of |X| have been introduced. According to (3), these moments may

be written as

M(n+1)
p (t) =

∫ +∞

−∞
dxP (n)(x, t)

∫ +∞

−∞
dX|X|pp(X, |x|)

= 2p/2 Γ
(

p
2 + 1

2

)
Γ
(

1
2

) ∫ +∞

−∞
dx|x|p/2P (n)(x, t), (5)

where the last relation follows from the form of 〈|X|p〉 for the Gaussian density,∫ +∞

−∞
dX|X|p exp

[ − X2

2t

]
√

2πt
=

Γ
(

p
2 + 1

2

)
Γ
(

1
2

) (2t)p/2. (6)
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Equation (5) leads to the recursion relation

M(n+1)
p (t) = 2p/2 Γ

(
p
2 + 1

2

)
Γ
(

1
2

) M(n)
p/2(t), (7)

so that

M(n)
p (t) = M(0)

p/2n(t)
n∏

k=1

2p/2k Γ
(

p
2k + 1

2

)
Γ
(

1
2

) . (8)

Making use of the identity [8]

Π(z) =
n∏

k=1

Γ
(

z
2k + 1

2

)
Γ
(

1
2

) =
Γ(z + 1)

22z(1−1/2n)Γ
(

z
2n + 1

) , (9)

the moments of the iterated probability density may be written as

M
(n)
2p (t) =

(2p)!
22p(1−1/2n)Γ

(
2p
2n + 1

)M(0)
2p/2n(t), M

(n)
2p+1(t) = 0. (10)

Asymptotic probability density and how it is approached. – Since the walker and all the
underlying RWs have a common origin in space and time,

P (n)(X, 0) = δ(X). (11)

When t > 0 and n → ∞, the even moments in (10) considerably simplify,

M
(∞)
2p (t > 0) =

(2p)!
4p

, (12)

and become time independent since M(0)
0 (t) = 1 for any initial density function. The Fourier

transform of the asymptotic probability density is related to its moments through a Taylor
expansion:

P(∞)(k, t > 0) =
∫ +∞

−∞
dXeikXP (∞)(x, t > 0) =

∞∑
q=0

(ik)q

q!
M (∞)

q (t > 0)

=
∞∑

p=0

(
− k2

4

)p

=
4

k2 + 4
. (13)

The inverse Fourier transform,

P (∞)(X, t > 0) =
1
2π

∫ +∞

−∞
dke−ikXP(∞)(k, t > 0) =

2
π

∫ +∞

−∞
dk

e−ikX

k2 + 4
, (14)

is easily evaluated using the method of residues. Finally, the asymtotic density takes the
simple form

P (∞)(X, t) =

{
δ(X) (t = 0),
e−2|X| (t > 0),

(15)

which is time independent as soon as t > 0 and universal, i.e., independent of the form of
the initial density P (0). This asymptotic density is invariant under the Gaussian transforma-
tion (3).
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Let us now examine how this stationary density is approached when n is large. For this,
the initial density P (0) must be specified. Coming back to the random-walk problem, we use
the Gaussian density for which

M(0)
2p/2n(t) =

Γ
(

p
2n + 1

2

)
Γ
(

1
2

) (2t)p/2n

(16)

according to (6). The even moments in (10) take the following form:

M
(n)
2p (t) =

(2p)!
4p

22p/2n

Γ
(

p
2n + 1

2

)
Γ
(

2p
2n + 1

)
Γ
(

1
2

) (2t)p/2n

. (17)

Using the duplication formula [9],

Γ(2z)
Γ(z)

= 22z−1 Γ
(
z + 1

2

)
Γ
(

1
2

) , (18)

this expression can be rewritten as

M
(n)
2p (t) =

(2p)!
4p

(2t)p/2n

Γ
(
1 + p

2n

) . (19)

Thus M
(n)
2p (0) = δp,0 in agreement with (11) and the length scales as t1/2n+1

after n iterations.
When n � 1, a first-order expansion in powers of 2−n gives

(2t)p/2n

= 1 + ln(2t)
p

2n
+ O(4−n),

Γ
(

1 +
p

2n

)
= 1 + Ψ(1)

p

2n
+ O(4−n) = 1 − γ

p

2n
+ O(4−n),

M
(n)
2p (t) =

(2p)!
4p

{
1 + [ln(2t) + γ]

p

2n

}
+ O(4−n), (20)

where Ψ(z) = Γ′(z)/Γ(z) is the digamma function and γ = 0.577 215 664 . . . is Euler’s constant.
Thus, the leading correction to the Fourier transform of the asymptotic density reads

δP(n)(k, t > 0) =
ln(2t) + γ

2n

∞∑
p=1

p

(
− k2

4

)p

= − ln(2t) + γ

2n

4k2

(k2 + 4)2
(21)

and the inverse Fourier transform leads to

δP (n)(X, t > 0) =
ln(2t) + γ

2n
(|X| − 1)e−2|X|. (22)

The deviation from the asymptotic density is exponentially small in n, a behaviour which is
independent of the initial density function according to (10). It has a weak (logarithmic) time
dependence for the Gaussian density.

Scaling behaviour and discrete IRW. – The Gaussian density in (1) can be written under
the more general scaling form

p(x, t) = t−1/zf

(
x

t1/z

)
, (23)
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Fig. 2 – Scaling function for the iterated probability distributions of the discrete RW compared to
the stationary density (solid line) obtained in the continuum limit. The histograms of the probability
distributions have been obtained through Monte Carlo simulations for t = 102 to 105 and t+1, working
with 107 samples. The statistical fluctuations are much smaller than the symbols, as indicated by
the symmetry of the data.

where the dynamical exponent z, which is equal to 2 for the Gaussian density, governs the
transformation of the time, t′ = t/bz, under a change of the length scale, x′ = x/b. The scaling
behaviour of the iterated density can be obtained by induction. Assuming that

P (n)(X, t) = t−1/znf (n)

(
X

t1/zn

)
, (24)

which is true with z0 = z and n = 0 for the initial density, and making use of (3), we obtain

P (n+1)(X, t) = t−1/zn

∫ +∞

−∞
dx|x|−1/zf

(
X

|x|1/z

)
f (n)

(
x

t1/zn

)

= t−1/zzn

∫ +∞

−∞
dvf

(
X

|v|1/zt1/zzn

)
f (n)(v)
|v|1/z

, (25)

so that P (n+1) scales like P (n) in (24). The dynamical exponent evolves according to zn =
zzn−1 = zn+1 and the scaling function satisfies the recursion relation

f (n)(u) =
∫ +∞

−∞
dvf

(
u

|v|1/z

)
f (n−1)(v)
|v|1/z

, u =
X

t1/zn+1 . (26)

Thus, with z > 1, the asymptotic density P (∞)(X, t) is time independent and reduces to its
scaling function f (∞)(X).

We now make use of this scaling behaviour to analyse Monte Carlo data for the dis-
crete IRW. The continuum result is expected to give a good description of these data for not
too small values of X and t. The histograms for the discrete probability distributions have
been obtained as follows: First a RW with t steps is generated, leading the walker to x0 (see
fig. 1). Then a second walk with |x0| steps, corresponding to the first support, is constructed.
When it ends at x1, the value of N (1)(x1), giving the number of walks ending at x1 at the first
iteration, is updated and the same process is repeated for the following iterations. Ns = 107

samples have been generated in this way for t = 102, 103, 104, 105. Since all the xn have the
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parity of t, the simulations were repeated for t + 1 in order to double the number of points
along the X-axis. The properly normalized histograms for a comparison with the density
functions are obtained by dividing N (n) by 2Ns.

The scaling functions for the discrete iterated walk are compared to the invariant den-
sity (15) in fig. 2. A good data collapse is obtained for each value of n. As expected, there
is a rapid convergence to the asymptotic density. The convergence is from above when |u| is
greater than a value close to 1, in agreement with (22).

Final remarks. – We have seen that the Gaussian iteration process leads to an invari-
ant probability density (15) which is independent of the initial density P (0). Actually, the
universality of the invariant density is more extended since P (0) may be itself considered as
resulting from a finite number of iterations involving arbitrary densities pk(x, t) (k = 0,m).
The initial density being now p0(x0, t), we have

P (0)(x, t) =
∫ +∞

−∞
dxm−1pm(x, |xm−1|)

∫ +∞

−∞
dxm−2pm−1(xm−1, |xm−2|) · · ·

· · ·
∫ +∞

−∞
dx0p1(x1, |x0|)p0(x0, t). (27)

After an infinite number of Gaussian iterations this density will evolve, as before, to the
universal time-independent invariant density. The arbitrary densities may be, for example,
shifted Gaussian densities,

pk(x, t) =
1√
2πt

exp
[
− (x − vkt)2

2t

]
(28)

corresponding to RWs with arbitrary drifts vk.
When, in the iteration process, the Gaussian density is replaced by a density which is even

in x, scales as in (23) and has finite moments, the nonvanishing even moments of the iterated
density are easily obtained in the same way as above. They involve a product similar to that
appearing in (8) and are time independent when n → ∞. Unfortunately, we were unable
to find another instance where these moments could be simplified as in (10), allowing for an
explicit calculation of the time-independent asymptotic density.
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