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Abstract. – We consider the problem of selecting the next degree of freedom (DoF) for
update in an extremal optimization algorithm designed to find the ground state of a system
with a complex energy landscape. We show that if we wish to minimize any linear function
of the state probabilities, e.g. the final energy, then the best distribution for selecting the
next DoF is a rectangular distribution with a cutoff for the fitness. We dub the family of
algorithms using rectangular distributions in combination with extremal optimization Fitness
Threshold Accepting.

Introduction. – Finding the ground state of a complex physical, chemical or combinatorial
problem is a big challenge. The challenge is due in part to the typically huge cardinality of the
state space and in part to the complex topology of the energy landscape defined on that space.
The characteristic property of this energy landscape is that it is fraught with exponentially
many local minima.
Generally, this causes deterministic algorithms to run very slowly. Alternatively, Monte

Carlo (MC) methods like simulated annealing (SA) [1], Tsallis statistics [2, 3] and threshold
accepting (TA) [4,5] are used. Despite the fact that finding the ground state in a finite number
of simulation steps cannot be guaranteed, such methods are widely used because good results
can be found in most cases.
The basic feature of MC methods is that a random walker in state space iterates moves

from the current state to a randomly selected neighbouring state. The selection of the new
state is usually performed in two steps. The first step selects a candidate move and the
second step decides whether to accept this move or to stay at the current location. The
decision whether to take a specific step is called the acceptance rule. A walk consists of a
large but finite number of such steps. In each step, the acceptance rule may be altered due
to a fixed schedule. The probability of taking the step is the product of the probability for
choosing the neighbour and the probability for accepting the proposed move.
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The acceptance rule and the schedule are to be chosen such that the random walker is
brought as far down in the energy landscape as possible. The performance of such walks can
be measured by analyzing the final probability distribution reached. For example, the mean
final energy or the final probability for having the walker in the ground state are common
measures of how well an algorithm performs. These should be, respectively, as low or high as
possible. Under such circumstances, TA is provably the best possible choice for the mentioned
acceptance rule [6].
In this paper, we examine the recently suggested heuristics called extremal optimization

(EO) [7]. EO is a stochastic optimization algorithm similar to simulated annealing (SA) and
threshold accepting (TA). EO also works by simulating random walkers, but needs a special
structure of the problem under consideration: every state is specified by several degrees of
freedom (DoF) each of which can be assigned a fitness. This typically arises by a special
structure of the objective function for the problem which, e.g., can be partially additive over
the DoF. Examples of problems that have this structure include spin glasses and traveling-
salesman problems. EO takes advantage of this additional structure to achieve better typical
performance on such problems by randomly selecting one DoF to change at each step. In EO
the next DoF to change is selected by first ranking the DoF according to their fitness values
and then selecting one of the ranks according to a probability distribution defined on them.
The DoF with the selected rank is to be changed during the next step. Based on the approach
presented in [6] we show that there exists a provably best possible distribution over the ranks.

Definitions. – We begin by formalizing needed definitions and assumptions. A system is
described by a discrete and finite set of states Ω = {α} and an energy function E = E(α),
assigning every state an energy value. In addition, the system possesses a neighbourhood
relationship, with N(α) ⊆ Ω denoting the set of states which are one step away from α.
Each state α = (α1, α2, . . . , αn) is specified by the values of n DoF indexed by i, 1 ≤ i ≤ n.

The i-th degree of freedom has value αi ∈ α(i) = {α(i)
1 , . . . , α

(i)
m }, where α(i) is the set of

possible values for the i-th DoF and n and m are finite. Each DoF is assigned a fitness λi(αi),
determining the ranking ki ∈ N

∗
n = {1, 2, . . . , n}, such that

ki ≤ kj iff λi ≤ λj , ∀ pairs (i, j). (1)

To complete the specification of the structure needed to perform an EO algorithm, we also need
a time-dependent probability distribution dt(k) over the ranks. Originally, a time-independent
distribution ∝ k−τ was used, introducing the single parameter τ > 0 [8, 9].
Given the structure above, an EO random walk in Ω proceeds from an initial state β =

(β1, β2, . . . , βn) as follows [7, 8]. First, a rank k, 1 ≤ k ≤ n is selected with probability dt(k).
This rank corresponds to a DoF, i, which is then changed by choosing with equal probability
one of the possible values in α(i) \{βi} so that the value of the k-th ranked DoF changes. This
basic step is iterated many times.
For a more in-depth discussion of EO in general, including motivation and issues related

to defining fitnesses, we refer to the literature [8–10]. Here we only stress the dependence of
the algorithm on a probability distribution over the ranks of the DoF and ask the question
whether there exists a (provably) optimal choice for such a distribution.
We adopt the following assumptions:
A1) Each step is independent of the former steps.
A2) At any epoch t, 1 ≥ dt(1) ≥ dt(2) ≥ · · · ≥ dt(n) ≥ 0, i.e. it is more probable to select

a low rank (meaning a DoF with low fitness) than a high rank (meaning a DoF with high
fitness).
A3)

∑
i dt(ki) = 1: dt(ki) is normalized.
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Fig. 1 – The simplex I in three dimensions.

These assumptions guarantee that we are dealing with a Markov process [11]. Therefore
the time development of pt

α is described by the master equation

pt
α =

∑
β∈Ω

Γt
αβpt−1

β (2)

with transition probabilities Γt
αβ . The random walk consists of a finite number of steps,

1 ≤ t ≤ S. We are interested in controlling the walk so as to bring the walker energetically
as low as possible. At the last step we measure the performance by some function of the final
state probabilities pS

α. Most commonly one of the following objectives is used [6]:
O1) The final mean energy should be as small as possible.
O2) The final probability of being in the ground state should be as large as possible.
Note that these objectives are linear functions of the final state probabilities pS

α. The
arguments given below apply to any linear function of the state probabilities. We consider
the state probabilities at time t and the linear objective function F as vectors pt and F . The
measure of the performance of the random walk can then be written as

F
(
pS

)
= F tr · pS =

∑
α∈Ω

FαpS
α , (3)

with (·)tr denoting transpose.
The formal problem. – The transition probabilities of (2) are specified by the rules of

EO to be

Γt
αβ =




1
m − 1d

t(ki) if α differs from β only in the i-th DoF,

0 otherwise.
(4)

Note that these transition probabilities are linear functions of dt(ki). We will be concerned
with selecting this distribution dt(ki) so as to minimize

F
(
pS

)
= F tr · pS =

∑
α∈Ω

FαpS
α −→ min . (5)

Following [6], we consider the distributions dt(ki) as an n-dimensional vector dt with entries dt
i

in [0, 1]. As a consequence of our assumptions A2) and A3), the region I of admissible vectors
dt is defined by the n+1 linear inequalities in A2) along with one linear equality in A3). The
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first inequality, 1 ≥ dt
1, follows from the others. Once we know that the dt

i are all non-negative
and sum to one, they must all be less than or equal to one. Of the remaining n inequalities,
exactly n − 1 of them must be set to equalities to find the extreme points (vertices) of the
region I. Letting V denote the set of extreme points of I, the elements of V are exactly those
vectors dt that have an initial sequence of i entries equal to 1/i, followed by the remaining
n− i entries equal to zeros. Explicitly, V = {v1,v2, . . . ,vn}, where v1 = (1, 0, 0, . . . , 0)tr, v2 =
(1/2, 1/2, 0, 0, . . . , 0)tr, . . . ,vi = (1/i, 1/i, . . . , 1/i, 0, 0, . . . 0)tr, and vn = (1/n, 1/n, . . . 1/n)tr.
Note that the elements of V are linearly independent. Figure 1 illustrates the situation for
n = 3, where the vertices are (1, 0, 0)tr, (1/2, 1/2, 0)tr, and (1/3, 1/3, 1/3)tr.
In fact I is exactly the convex hull of V ,

C(V ) =




n∑
i=1

aivi = a1



1
0
...
0


+ a2



1/2
1/2
...
0


+ . . . an



1/n
1/n
...
1/n


 ; ai ∈ [0, 1],

n∑
i=1

ai = 1




, (6)

which is a simplex. To see this, consider the l-th row of an element dt of C(V ):

dt
l =

n∑
i=l

ai
1
i
=

n∑
i=l+1

ai
1
i
+ al

1
l
= dt

l+1 + al
1
l
≥ dt

l+1 , (7)

so A2) is fulfilled. Summing up the rows of C(V ) gives

n∑
l=1

dt
l =

n∑
l=1

n∑
i=l

ai
1
i
=

n∑
l=1

lal
1
l
=

n∑
l=1

al = 1, (8)

showing that A3) is also fulfilled. Thus, C(V ) ⊂ I. Conversely, consider an arbitrary point
p ∈ I. Since the vertices vi are linearly independent, we can use them as a basis and write p
as a linear combination:

p =
n∑

i=1

bivi. (9)

For the l-th component pl this gives

pl =
n∑

i=l

bi
1
i
= pl+1 + bl

1
l

, (10)

which by A2) implies

pl ≥ pl+1 =⇒ pl − pl+1 = bl
1
l
≥ 0 =⇒ bl ≥ 0. (11)

Summing up all pl and using A3) gives

n∑
l=1

pl =
n∑

l=1

lbl
1
l
=

n∑
l=1

bl = 1 =⇒ bl ≤ 1. (12)

So we have bl ≥ 0 and bl ≤ 1, therefore p ∈ C(V )∀p ∈ I, i.e. I ⊂ C(V ).
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The solution. – We are now prepared to tackle the optimization problem (5). Following
the approach in [6], we apply the Bellman principle of dynamic programming [12], and work
our way backwards starting with the last step. The output of the last step pS is used to
determine the optimality criterion (5).
In the last step S, we have to solve the optimization problem (5) for a given input pS−1.

Using (2) we get

F
(
pS

)
=

∑
α,β∈Ω

FαΓS
αβpS−1

β −→ min (13)

with the matrix elements ΓS
αβ given by (4). Hence we have to find the minimum of a linear

function on a simplex. The minimum is found by taking the distribution dS which selects the
DoF that should be changed on the last step equal to one of the vertices vi ∈ V . We denote
the corresponding optimal transition probabilities by ΓS .
Now, consider the second to last step S − 1. For any given input pS−2 we have to solve

F tr · pS =
(
F tr · ΓS

) ·
( ∑

α,β∈Ω

ΓS−1
αβ pS−2

β

)
−→ min . (14)

Defining F (2) = F tr · ΓS as the new objective function, we can apply the same arguments for
determining dS−1 and denote the resulting transition matrix by ΓS−1. Hence also the optimal
transition probabilities for ΓS−1 are found by taking dS−1 to be an element of V . We process
all remaining steps in a similar manner, finding that optimality can be achieved at every step
by choosing dt to be one of the vertices in V .
The proof shows that a rectangular distribution over some of the “least fit” DoF gives

the best implementation of EO. We name the resulting class of algorithms using rectangular
distributions in connection with EO fitness threshold accepting (FTA), because, in analogy
to TA, all moves triggered by selecting ranks which lie under a certain fitness threshold are
selected with equal probability.

Uniqueness. – The proof above is based on the fundamental theorem of linear program-
ming, which states that a linear function defined on a simplex assumes its minimum at a
vertex. Our proof does not state that all optimal strategies are of the given form. Other
strategies may do equally well, but not better.
If there exists an optimal strategy other than FTA, it follows that an edge or a face of the

simplex does equally well. The optimality of such an edge corresponds to selecting the least
r ranks with equal probability doing equally well as selecting the least r − 1 ranks.
Much more unlikely is the possibility that a strictly monotonic distribution such as dt(k) ∝

τ−k can possibly be optimal [6]. This would in fact imply that all the vertices in V do equally
well. It should be clear that this can only happen for rather trivial problems.

Conclusions. – In this paper we considered the problem of finding the ground state
of a complex system by using the heuristics known as extremal optimization. We used a
master equation to describe the corresponding dynamics of random walkers on state space
and formulated some straightforward assumptions on the probability distribution for selecting
the DoF to change at the next step.
Our goal was to find transition probabilities which assure the optimum control of the

random walkers’ movements. We found that a special distribution of transition probabilities,
which we named fitness threshold accepting, is provably optimal, provided the performance
of the random walk is measured by a linear function in the state probabilities. This includes
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minimizing the expected final energy or maximizing the probability of being in the ground
state at the final time.
While we cannot show that fitness threshold accepting is the only optimal way to im-

plement extremal optimization, our proof shows that a strictly monotonic distribution over
ranks k, such as dt(k) ∝ τ−k advocated by Boettcher et al. [7], can only match the optimal
performance if all distributions perform equally well.
Knowledge that best performance can be achieved using fitness threshold accepting is only

of limited use, since the thresholds to be used are not known a priori. Therefore, we per-
formed preliminary numerical experiments indicating a better performance of FTA compared
to the original implementation of EO. In particular, we have implemented FTA and have tried
different cooling schedules which narrow the rectangular distribution over the least-fit DoF in
every step. The indications are that FTA outperforms the DoF selection rule advocated by
Boettcher and Percus. We are presently performing a careful and extensive numerical com-
parison which will be the topic of a future publication. Based on these results, our opinion is
that the FTA algorithm should be used.
Our proof was based on the assumption that the objective measuring the performance of

the Extremal Optimization is a linear function of the state probabilities. While this includes
most desirable measures, it does not include them all. As an example, the best-so-far energy
Ebsf as a measure is beyond the scope of the proof presented here. While it can also be shown
that Ebsf is minimized (within an EO framework) by employing an FTA scheme, the requisite
arguments for that proof are too lengthy for this letter and will soon be published elsewhere.
Further, our proof had to assume a finite state space. We postpone the exploration of con-

tinuous state spaces to a future effort, but point out that the realities of discrete arithmetic on
digital computers make any state space effectively finite. Finally, we note that our discussion
considered only algorithms based on extremal optimization. The possibility of better algo-
rithms not based on extremal optimization remains. But within the given field, the arguments
presented here establish the structure of a provably optimal strategy which furthers the study
of heuristic approaches to global minimization.
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