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PACS. 89.75.Da – Systems obeying scaling laws.
PACS. 73.21.Ac – Multilayers.
PACS. 61.43.Hv – Fractals; macroscopic aggregates (including diffusion-limited aggregates).

Abstract. – The optical spectra of fractal multilayer dielectric structures have been shown
to possess spectral scalability, which has been found to be directly related to the structure’s
spatial (geometrical) self-similarity. Phase and amplitude scaling relations, as well as effects of
finite structure size, have been derived.

Introduction. – It is commonly known that the optical spectra of periodic dielectric
materials (including periodic multilayers in particular) possess forbidden gaps, which are
demonstrated to directly result from spatial periodicity [1–3]. On the other hand, disor-
dered dielectric media have been discovered to slow down, localize, and confine light waves
traveling through them [4, 5]. The same effects are known for electrons and other quantum
particles in periodic and random potential, respectively (see [6] and the review [7]). So, both
periodic and random structures (which represent the two extreme, and hence most studied,
cases of multilayers), exhibit characteristic spectral effects that result from their topology.
Recent studies reveal that one type within the “intermediate” case (nonperiodic but deter-

ministic structures) also displays characteristic spectral effects not present in either of extreme
cases. It was found [8] that quasiperiodic (e.g., Fibonacci) multilayers have self-similar spec-
tra. Their transmission bands represent Cantor sets, a well-known example of one-dimensional
(1D) fractals. It was proved that spectral self-similarity is a characteristic property of spatial
quasiperiodicity. The same is equally applicable for electronic spectra.
In this letter, we would like to address another class of deterministic nonperiodic struc-

tures, namely fractal multilayers. We show that their geometrical self-similarity results in
spectral scalability, earlier observed by us in numerical computations (see ref. [9]). This paper
analytically shows that the origin of scalability is the self-similarity inherent to all fractal
multilayers, and this is a manifestation of correlation between geometrical properties of the
structures and properties of their eigenvalue spectra.

Fractal multilayers. – One of the common examples of fractal multilayers is the well-
known triadic Cantor stack generated using the “middle third removal” procedure [10] (see
fig. 1a). However, this procedure can be generalized. The most straightforward way to do
so is to complicate the removal routine, applying it not only to the middle third, but to
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Fig. 1 – Sample fractal multilayer structures: (a) Cantor “middle third” structures (3, {1}, N) with the
relations for ∆N and ∆̃N shown; (b) higher-G Cantor structures (5, {1, 3}, N) for smaller values of N .

arbitrary (yet similar from generation to generation) regions of the structure. Some variations
are described in [10] and investigated in [9, 11–13].
Here we introduce a more general procedure, which encompasses most of 1D fractals that

have prefractals and hence can be used in multilayer design. The algorithm starts with an
initiator, a single dielectric layer (label it A) with refractive index nA and thickness dA. The
initiator is stacked together G times, and the layers are numbered in base G (starting with
zero). Then, those parts whose numbers belong to a given subset of digitsC ⊂ {0, 1, . . . , G−1}
are replaced with layers of another dielectric (labeled B), with refractive index nB �= nA and
thickness dB . This replication-replacement (RR) procedure is then repeated for the resulting
structure (which now consists of G layers), with the only difference that a group of G B-
type layers is now used to replace the appropriate fragments. Repeating this RR procedure,
multiple times yields the desired fractal multilayer.
Here, an arbitrary integer G > 2 together with the subset C form the generator of the

structure, while the number N of RR procedures applied is called the number of generations.
The whole structure can be referred to as a (G,C, N) structure. One can see that the usual
N -stage middle third Cantor stack is nothing but a particular case of (3, {1}, N). Other
particular cases include higher-G Cantor structures (G = 3, 5, 7, . . .; C = {1, 3, . . . , G − 2},
N) [9], non-symmetric stacks [10], and generalized Cantor bars [12].
Sample stacks are shown in fig. 1, and the construction details can be inferred therefrom.
To conclude this section, let us list some simple but important relations concerning fractal

multilayers. First of all, the total number of layers in such a structure is GN (here and further,
several adjacent layers of the same material count as separate layers). Among these layers,
(G − C)N are A-type and the rest are B-type, C being the number of members in C. Then,
the total thickness of a (G,C, N) structure can be written as a recurrent relation:

∆N = (G − C)NdA +
(
GN − (G − C)N

)
dB ≡ (G − C)∆N−1 + C∆̃N−1 . (1)

From eq. (1) one can obtain a scaling relation for ∆̃N = GNdB , and in all cases ∆0 = dA.
For all calculations, the constituent layers were chosen have equal optical thickness, i.e.

nAdA = nBdB = d∗ ≡ πc/2ω0 . (2)

This condition causes the spectra to be periodic with respect to frequency, the period equal
to 2ω0. This outcome is very convenient, since it provides a natural way to normalize the
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Fig. 2 – Scalability of optical spectra for fractal multilayers: (a) (3, {1}, N = 4), the central part of
the spectrum magnified in the frequency scale by 3 vs. (b) the full period of the N = 3 spectrum;
(c) the central part of N = 4 magnified by 9 = 32, (d) the central part of N = 3 magnified by 3, and
(e) the full period of the N = 2 spectrum; (f) (4, {1}, 4), the central part of the spectrum magnified by
4 vs. (g) full period of the (4, {1}, 3). Compare the looks of (a) and (b); (c), (d), and (e); (f) and (g).

frequency scale introducing the dimensionless frequency η ≡ ω/ω0. It also allows only one
period of spectrum to be referred to as “spectrum”, which is what will be done hereafter.

Spectral scalability. – Keeping this in mind, we can now present a simple definition of
spectral scalability as follows. We have found that the whole spectrum of a (G,C, N) stack
appears as a part of a (G,C, N + 1) stack spectrum. If we magnify a certain part of the
latter (the area centered on 2ω0, or on η = 0, 2, . . ., to be exact) by a factor of G, its shape
will coincide very well with that of the former spectrum. This property was observed and
reported by us earlier [9] for (3, {1}, N) and (5, {1, 3}, N) structures (see fig. 2a-e). With the
same method used in the calculations, subsequent research has revealed that this property
holds for any G and C (see, e.g., fig. 2f, g). So does the relation for the factor by which
one has to magnify the central part of the (G,C, N1) stack spectrum for matching with that
of (G,C, N2 < N1) stack. Termed the scaling factor between (G,C, N1) and (G,C, N2)
structures, it equals

S = GN1−N2 . (3)

The fact that the scaling factor in (3) exactly equals the geometrical factor of self-similarity,
which is clearly seen from the construction procedure, alone hints at the idea that geometrical
self-similarity of fractal multilayers and scalability of their optical spectra are related. However,
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Fig. 3 – Exact comparison of the scaled spectra for (3, {1}, N) structures: (a) unchanged, (b) raised
to a power γ.

such qualitative speculations are clearly not enough to state that spectral scalability is a direct
result of geometrical self-similarity.
A more convincing proof of this statement may be obtained from analytical calculations.

It is worth noting, however, that spectral scalability, while visually apparent as in fig. 2, is
difficult to be described mathematically because close inspection of the spectra reveals that
there is no exact coincidence either in the value of the transmission coefficient or in the peak
locations (see fig. 3a). However, these discrepancies do not change the shape of the spectral
curve noticeably, thus not hindering the observation of scalability.
First, we consider the simplest case, the middle third Cantor stacks (3, {1}, N). To analyt-

ically calculate the spectra of such multilayers, it is possible to use the self-similarity method
of calculation [11,12], which is a generalization of Airy formulas based on the structure being
self-similar. According to this method, the reflection and transmission coefficients for the
(3, {1}, N + 1) and (3, {1}, N) structures are related as

RN+1(η) = gr

[
RN (η), TN (η), ∆̃N , η

]
, TN+1(η) = gt

[
RN (η), TN (η), ∆̃N , η

]
, (4)

where ∆̃N is as defined by eq. (1). The functions

gr(x, y, d, η) = x+
xy2ε2(d, η)
1− x2ε2(d, η)

, gt(x, y, d, η) =
y2ε(d, η)

1− x2ε2(d, η)
(5)

are obtained using effective medium formalism in [11]. The initial conditions for these recur-
rent relations are derived from the normal-incidence reflection and transmission coefficients
for a single layer (i.e., a structure with N = 0), such that

R0(η) = −r +
rtt′ε2

0(∆0, η)
1− r2ε2

0(∆0, η)
, T0(η) =

tt′ε0(∆0, η)
1− r2ε2

0(∆0, η)
. (6)

Here r, t, t′ are normal-incidence Fresnel’s coefficients for the layer interfaces, and

ε(d, η) ≡ exp
[

i

c
ηω0nBd

]
, ε0(d, η) ≡ exp

[
i

c
ηω0nAd

]
(7)

are the phase exponents.
Now, to proceed with the analysis of scalability, we need to compare the following quan-

tities:

TN+1

(
η

3

)
and TN (η). (8)
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Using the relation for ∆̃N and substituting (4) and (5) into (8), one can obtain

TN+1

(
η

3

)
=

T 2
N

(
η
3

)
exp

[
i
c

η
3ω0nB · 3NdB

]
1− R2

N

(
η
3

)
exp

[
2i
c

η
3ω0nB · 3NdB

] , (9)

TN (η) =
T 2

N−1(∆N−1, η) exp
[

i
cηω0nB · 3N−1dB

]
1− R2

N−1(∆N−1, η) exp
[
2i
c ηω0nB · 3N−1dB

] . (10)

We see that the phase exponents in (9) and (10) are exactly equal, and the sole difference
between TN+1(η

3 ) and TN (η) lies in the coefficients, TN (η
3 ), RN (η

3 ) and TN−1(η), RN−1(η),
respectively. But if one expands these coefficients in the same way, using (4) and (5), one can
see that the difference will again manifest itself only in the coefficients, this time, TN−1(η

3 ),
RN−1(η

3 ) and TN−2(η), RN−2(η), respectively.
Tracing this procedure down to N = 0 and seeing that all frequency-dependent exponents

that appear along the way are equal for both terms in (8), we finally reach the point where
subsequent substitution of eqs. (4) is no longer possible. At this point, the factors to be
compared are T1(η

3 ), R1(η
3 ) and T0(η), R0(η). The corresponding phase terms are ε(∆0, η)

and ε0(∆0, η) as defined in eq. (7), and they are equal if the condition (2) is met. The
difference in coefficients is smaller as r decreases, and the agreement is total if r2 ≈ 0.
As we have seen, all frequency-dependent exponents in the expressions (8) are equal at any

stage of decomposition. So it can be said that the quantities in eq. (8) have identical phase
structure, with a minor difference in the coefficients. Since the characteristic spectral features
(transmission resonances and local band gaps) are essentially phase phenomena (resulting
from constructive and destructive interference, respectively), similar phase structure results
in similar appearance of spectral portraits as confirmed by fig. 2.
Rigorous analytical generalization of these results to all fractal multilayers is rather straight-

forward and can be achieved by further generalizing the Sun-Jaggard computation procedure,
e.g., according to the multiple-reflection effective-medium formalism presented in [14].

Amplitude mismatch: vertical scalability. – However, as can be seen in fig. 3a, in the
areas between characteristic features there is a significant difference in transmittance value T .
This difference, which does not alter the shape of spectra, can be eliminated if, in addition
to the above-mentioned frequency scaling (3), the value of TN+1(η/G) is raised to a certain
power γ (see fig. 3b). Thus, the final scalability equation has the form

[
TN+1

(
η

G

)]γ

= TN (η). (11)

Numerical analysis reveals that γ depends on the structure parameters and varies slightly
with frequency. In the region close to η = 0, where scalability is most often observed, we have
found γ to equal

γ = α+
1− α

f2
, f ≡ G − C

G
, (12)

where α was found to be small (α ∼= 0.1, see fig. 4).
It is important to note that γ only depends on the ratio between G−C and G, called the

dielectric filling fraction, and so, e.g., the structures (6, {2, 3}, N), (6, {3, 4}, N), (6, {1, 4}, N)
have the same γ. The fact that it does not depend on the position of “removed” layers, nor on
the structure’s lacunarity, nor on the value of nB/nA, together with an observation that in the
frequency region in question the propagating wave exhibits little internal reflection, suggests
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Fig. 4 Fig. 5

Fig. 4 – The dependence γ(f). The dots are numerical data, and the solid curve is the best-fit
function. The dashed line is the analytically derived function.

Fig. 5 – An enlargement of a small part of the (3, {1}, N) spectra. N ranges from 3 to 8. The peak
mismatch is smaller as N is larger.

that it is only the amount of dielectric “removed” during the transition N → N + 1 that is
important for γ. Thus, we can move forward to conclude that the only important parameter
in f (see eq. (12)) is its numerator G−C, while the sole part of the denominator G is to allow
for the frequency scaling (3).
That said, it is enough to investigate the simplest case in order to analytically establish the

relation γ(f). Instead of an arbitrary (G,C, N), consider an equivalent structure (G,C′ =
{G − C, . . . , G − 1}, N), which is effectively a single layer whose thickness scales as

dN = (G − C)NdA . (13)

Using the Airy formulas for the transmission, we can rewrite the scalability equation
∣∣∣∣ (1− r2)ε′

1− r2ε′2

∣∣∣∣ =
∣∣∣∣ (1− r2)ε′f

1− r2ε′2f

∣∣∣∣
γ

=⇒ 1 + r4 − 2r2 cos δ
1 + r4 − 2r2

=
(
1 + r4 − 2r2 cos fδ

1 + r4 − 2r2

)γ

, (14)

where ε′ ≡ eiδ = exp[(G − C)Nηπ/2].
Since we are staying close to η = 0, we can assume η � 1 and therefore δ � 1. At the

2nd order of Taylor series of cos δ (the first order, obviously, leads to the identity 1 = 1γ), we
finally arrive at

1 +
2r

(1− r)2
δ2 = 1 + γ

2r
(1− r)2

(fδ)2 =⇒ γ =
1
f2

, (15)

which shows a good agreement with the numerically obtained eq. (12) (see fig. 4). An even
better analytical agreement can be achieved using a finer approximation for cos δ. This also
results in a weak dependence γ(η), as was numerically confirmed and found not significant for
the observation of scalability.

Peak mismatch: perturbation in characteristic effects. – So far we have shown that both
phase structure matching and amplitude matching can be derived analytically. However, in
fig. 3 one can observe small mismatches in the resonance peak locations for the spectral curves
in (11). This agrees with the difference in the coefficients for the quantities (8) and shows
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that spectral scalability is only approximate in real multilayers. However, we state that it
results from the finite size of the structures under study. So, they are in fact prefractals
rather than true fractals, so spatial self-similarity in them is not exact either. This disturbs
the scalability effect in much the same way as it occurs in other types of media. For example,
finite periodic structures cannot exhibit completely zero transmission in the band gaps, and in
finite disordered media light cannot be completely trapped. In this manner, N -th generation
Cantor multilayers can be compared to N -period 1D photonic crystals, while it is commonly
known that band gaps are prominent at much larger N than were used for the plots in fig. 3.
However, if certain conditions are met, one can observe decent band gaps even in periodic

multilayers with as many as four periods. An analogous statement is true for scalability
in fractal multilayers. But the condition to be desired is opposite. As was noted earlier
and confirmed in numerical calculations, the peak mismatch decreases if the refractive index
contract is small, while band structure is more pronounced if the contrast is large enough [1,2].
Had it been otherwise, i.e., if N approached infinity, it is our guess that spectral scalability

would be exact. This can be indirectly confirmed by plotting the scaled spectra for several
generations. As seen in fig. 5, the mismatch goes smaller as N grows larger.

Conclusion. – To summarize, using the method that inherently contains spatial self-
similarity [11] along with scaling relations (3) and (13), we have found that fractal multilayers
exhibit scalability both in phase and in the value of transmittance according to eq. (11). So,
it can be concluded that spectral scalability is actually the result of spatial self-similarity,
and moreover, it is a characteristic relation between a topological property of a multilayer
structure and a spectral property of wave propagation. These results are also applicable for
the electronic spectra in a fractal potential.
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